Citation: | TANG Yu, ZHANG Wei, LI Xingxing, FU Yuanchen, ZHANG Keke. High-Accuracy Orbit Prediction of Low Earth Orbit Satellites Using Machine Learning Algorithms[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230411 |
[1] |
Reid T, Neis A, Walter T, et al. Leveraging Commercial Broadband LEO Constellations for Navigating [C]. Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS +2016). Portland, Oregon:ION, 2016:2300-2314.
|
[2] |
Ge H, LI B, GE M, et al. Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS) [J]. Remote Sensing, 2018, 10(7):984.
|
[3] |
Li X, Ma F, Li X, et al. LEO Constellation-augmented Multi-GNSS for Rapid PPP Convergence[J]. Journal of Geodesy, 2019, 93(5):749-764.
|
[4] |
Zeng Tian, Sui Lifen, Jia Xiaolin, et al. Simulation of Combined Orbit Determination with a Small LEO Constellation and BDS-3 Full Constellation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1):61-68. (曾添, 隋立芬, 贾小林, 等. 小型化LEO星座与BDS-3全星座联合定轨仿真[J]. 武汉大学学报(信息科学版), 2022, 47(01):61-68.)
|
[5] |
Teng Y, Jia X, Peng G. LEO Navigation Augmentation Constellation Design and Precise Point Positioning Performance Analysis Based on BDS-3[J]. Advances in Space Research, 2023, 72(06):1944-1960.
|
[6] |
Chang Zhiqiao, Hao Jinming, Zhang Chengjun. Precision Analysis of Orbit Prediction of GPS Satellites[J]. Engineering of Surveying and Mapping, 2006(02):27-29+39.(常志巧, 郝金明, 张成军. GPS精密星历的外推精度分析[J]. 测绘工程, 2006,(02):27-29+39.)
|
[7] |
Ge H, Li B, Ge M, et al. Improving Low Earth Orbit (LEO) Prediction with Accelerometer Data[J]. Remote Sensing, 2020, 12(10):1599.
|
[8] |
Peng H, Bai X. Artificial Neutral Network-based Machine Learning Approach to Improve Orbit Prediction Accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55(05):1248-1260.
|
[9] |
Peng H, Bai X. Improving Orbit Prediction Accuracy Through Supervised Machine Learning[J]. Advances in Space Research, 2018, 61(10):2628-2646.
|
[10] |
Cao Lei. Satellite Orbit Prediction Method Based on Compensation Model by Using Deep Neural Network[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015. (曹磊. 基于深度神经网络补偿模型的轨道预报技术[D]. 南京:南京航空航天大学, 2015.)
|
[11] |
Yang Xianrui. Research on Satellite Orbits Predicting Algorithm Based on Deep Learning[D]. Harbin:Harbin Institute of Technology, 2020. (杨先睿. 基于深度学习的卫星轨道预报算法研究[D]. 哈尔滨:哈尔滨工业大学, 2020.)
|
[12] |
Zhang Xinyu, Liu Yuan, Song Jianing. Short-term Orbit Prediction Based on LSTM Neural Network[J]. Journal of Systems Engineering and Electronics, 2022, 44(03):939-947. (张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(03):939-947.)
|
[13] |
Sun Yixuan, Shao Chunfu, Ji Xun, et al. Urban Traffic Accident Tine Series Prediction Model Based on Combination of ARIMA and Information Granulation SVR[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(03):348-353+359. (孙轶轩, 邵春福, 计寻, 等. 基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版), 2014, 54(03):348-353+359.)
|
[14] |
Rumelhart D, McClelland J. Parallel Distributed Processing[M]. Volsland2, MIT Press, 1986.
|
[15] |
Chen Zhigao, Wu Zihao, Ban Ya, et al. Discharge Prediction in Tidal Reach Using Harmonic Analysis and VMD-BP Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(08):1389-1397. (陈志高, 吴子豪, 班亚, 等. 基于调和分析及VMD-BP神经网络的感潮河段流量预报[J]. 武汉大学学报(信息科学版), 2023, 48(08):1389-1397.)
|
[16] |
Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(08):1735-1780.
|
[17] |
Yang Li, Wu Yuxi, Wang Junli, et al. Research on Recurrent Neural Network[J]. Journal of Computer Applications, 2018, 38(S2):1-6+26. (杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2):1-6+26.)
|
[18] |
[EB/OL].(2016-01-14) [2023-10-17].https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-3/Rise_and_shine_for_Sentinel-3A
|
[19] |
Li X, Han X, Li X, et al. GREAT-UPD:An Open-source Software for Uncalibrated Phase Delay Estimation Based on Multi-GNSS and Multi-frequency Observations[J]. GPS Solutions, 2021, 25:1-9.
|
[20] |
Yang Qing, Wang Chenwei. A Study on Forecast of Global Stock Indices Based on Deep LSTM Neural Network[J]. Statistical Research, 2019, 36(03):65-77. (杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(03):65-77.)
|
[21] |
Li Zhanshan, Liu Zhaogeng, Ding Guoxuan, et al. Feature Selection Algorithm Based on XGBoost[J]. Journal on Communications, 2019, 40(10):101-108. (李占山, 刘兆赓, 丁国轩, 等. 基于XGBoost的特征选择算法[J]. 通信学报, 2019, 40(10):101-108.)
|
[22] |
Wang Deyun, Zhang Ludan, Wu Qi, et al. Flood Risk Assessment Based on Machine Learning Algorithms:A Case Study of Yichang City[J]. Resources and Environment in the Yangtze Basin, 2023, 32(08):1710-1723.(王德运, 张露丹, 吴祈, 等. 基于机器学习算法的洪涝灾害风险评估——以宜昌市为例[J]. 长江流域资源与环境, 2023, 32(08):1710-1723.)
|
[23] |
The European Space Agency. Near Real-Time, Slow-Time Critical or Non-Time Critical?[EB/OL].[2023-10-17].https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-altimetry/product-types/nrt-or-ntc
|
[1] | HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690 |
[2] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168 |
[3] | GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167 |
[4] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[5] | LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627 |
[6] | LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277. |
[7] | XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829. |
[8] | ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281. |
[9] | JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434. |
[10] | Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742 |