TANG Yu, ZHANG Wei, LI Xingxing, FU Yuanchen, ZHANG Keke. High-Accuracy Orbit Prediction of Low Earth Orbit Satellites Using Machine Learning Algorithms[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230411
Citation: TANG Yu, ZHANG Wei, LI Xingxing, FU Yuanchen, ZHANG Keke. High-Accuracy Orbit Prediction of Low Earth Orbit Satellites Using Machine Learning Algorithms[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230411

High-Accuracy Orbit Prediction of Low Earth Orbit Satellites Using Machine Learning Algorithms

More Information
  • Received Date: February 27, 2024
  • Available Online: March 13, 2024
  • Objectives: Precise orbit prediction of low earth orbit (LEO) satellites is the foundation of LEO augmentation navigation. Due to the impact of non-conservative perturbation forces, conventional dynamic extrapolation method relies on high-accuracy dynamic models and suffer from rapid error accumulation. Methods: We combine machine learning algorithms and dynamic integration method to improve the accuracy of LEO orbit prediction. Three machine learning models are analyzed, including support vector machine (SVM), back propagation (BP) and long short term memory (LSTM) neural networks. To compare the performance of different machine learning algorithms in the high-accuracy orbit prediction, we process the orbit error time series of Sentinel-3A from January 1, 2019 to July 14, with the dynamic features selected by extreme gradient boosting (XGBoost). The optimal input configuration parameters for each machine learning models are further investigated to exploit the potential of the models in the orbit prediction. Results: The result shows that the performance of three machine learning models in the prediction varies from prediction time. When the prediction time is limited to 20 min, LSTM model presents the best performance with an accuracy improvement of 38.1%, which is evidently superior to SVM (-0.1%) and BP (-1.2%), and the corresponding orbit accuracy is 1.07 cm (3D). For the prediction exceeding 40 min, SVM and BP models outperform LSTM. When the prediction time reaches 180 min, the predicted orbit can still achieve the accuracy around 6-7 cm with the employment of SVM/BP models. Conclusion: Three models can effectively improve the orbit prediction accuracy of LEO satellites. LSTM model can achieve the best performance in ultra-short prediction (20 min), while SVM and BP models are more suited to the prediction exceeding 40 min. Compared with the traditional orbit prediction method, the improvement of machine learning models is about 40-50% overall.
  • [1]
    Reid T, Neis A, Walter T, et al. Leveraging Commercial Broadband LEO Constellations for Navigating [C]. Proceedings of the 29th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS +2016). Portland, Oregon:ION, 2016:2300-2314.
    [2]
    Ge H, LI B, GE M, et al. Initial Assessment of Precise Point Positioning with LEO Enhanced Global Navigation Satellite Systems (LeGNSS) [J]. Remote Sensing, 2018, 10(7):984.
    [3]
    Li X, Ma F, Li X, et al. LEO Constellation-augmented Multi-GNSS for Rapid PPP Convergence[J]. Journal of Geodesy, 2019, 93(5):749-764.
    [4]
    Zeng Tian, Sui Lifen, Jia Xiaolin, et al. Simulation of Combined Orbit Determination with a Small LEO Constellation and BDS-3 Full Constellation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(1):61-68. (曾添, 隋立芬, 贾小林, 等. 小型化LEO星座与BDS-3全星座联合定轨仿真[J]. 武汉大学学报(信息科学版), 2022, 47(01):61-68.)
    [5]
    Teng Y, Jia X, Peng G. LEO Navigation Augmentation Constellation Design and Precise Point Positioning Performance Analysis Based on BDS-3[J]. Advances in Space Research, 2023, 72(06):1944-1960.
    [6]
    Chang Zhiqiao, Hao Jinming, Zhang Chengjun. Precision Analysis of Orbit Prediction of GPS Satellites[J]. Engineering of Surveying and Mapping, 2006(02):27-29+39.(常志巧, 郝金明, 张成军. GPS精密星历的外推精度分析[J]. 测绘工程, 2006,(02):27-29+39.)
    [7]
    Ge H, Li B, Ge M, et al. Improving Low Earth Orbit (LEO) Prediction with Accelerometer Data[J]. Remote Sensing, 2020, 12(10):1599.
    [8]
    Peng H, Bai X. Artificial Neutral Network-based Machine Learning Approach to Improve Orbit Prediction Accuracy[J]. Journal of Spacecraft and Rockets, 2018, 55(05):1248-1260.
    [9]
    Peng H, Bai X. Improving Orbit Prediction Accuracy Through Supervised Machine Learning[J]. Advances in Space Research, 2018, 61(10):2628-2646.
    [10]
    Cao Lei. Satellite Orbit Prediction Method Based on Compensation Model by Using Deep Neural Network[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2015. (曹磊. 基于深度神经网络补偿模型的轨道预报技术[D]. 南京:南京航空航天大学, 2015.)
    [11]
    Yang Xianrui. Research on Satellite Orbits Predicting Algorithm Based on Deep Learning[D]. Harbin:Harbin Institute of Technology, 2020. (杨先睿. 基于深度学习的卫星轨道预报算法研究[D]. 哈尔滨:哈尔滨工业大学, 2020.)
    [12]
    Zhang Xinyu, Liu Yuan, Song Jianing. Short-term Orbit Prediction Based on LSTM Neural Network[J]. Journal of Systems Engineering and Electronics, 2022, 44(03):939-947. (张心宇, 刘源, 宋佳凝. 基于LSTM神经网络的短期轨道预报[J]. 系统工程与电子技术, 2022, 44(03):939-947.)
    [13]
    Sun Yixuan, Shao Chunfu, Ji Xun, et al. Urban Traffic Accident Tine Series Prediction Model Based on Combination of ARIMA and Information Granulation SVR[J]. Journal of Tsinghua University (Science and Technology), 2014, 54(03):348-353+359. (孙轶轩, 邵春福, 计寻, 等. 基于ARIMA与信息粒化SVR组合模型的交通事故时序预测[J]. 清华大学学报(自然科学版), 2014, 54(03):348-353+359.)
    [14]
    Rumelhart D, McClelland J. Parallel Distributed Processing[M]. Volsland2, MIT Press, 1986.
    [15]
    Chen Zhigao, Wu Zihao, Ban Ya, et al. Discharge Prediction in Tidal Reach Using Harmonic Analysis and VMD-BP Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(08):1389-1397. (陈志高, 吴子豪, 班亚, 等. 基于调和分析及VMD-BP神经网络的感潮河段流量预报[J]. 武汉大学学报(信息科学版), 2023, 48(08):1389-1397.)
    [16]
    Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(08):1735-1780.
    [17]
    Yang Li, Wu Yuxi, Wang Junli, et al. Research on Recurrent Neural Network[J]. Journal of Computer Applications, 2018, 38(S2):1-6+26. (杨丽, 吴雨茜, 王俊丽, 等. 循环神经网络研究综述[J]. 计算机应用, 2018, 38(S2):1-6+26.)
    [18]
    [EB/OL].(2016-01-14) [2023-10-17].https://www.esa.int/Applications/Observing_the_Earth/Copernicus/Sentinel-3/Rise_and_shine_for_Sentinel-3A
    [19]
    Li X, Han X, Li X, et al. GREAT-UPD:An Open-source Software for Uncalibrated Phase Delay Estimation Based on Multi-GNSS and Multi-frequency Observations[J]. GPS Solutions, 2021, 25:1-9.
    [20]
    Yang Qing, Wang Chenwei. A Study on Forecast of Global Stock Indices Based on Deep LSTM Neural Network[J]. Statistical Research, 2019, 36(03):65-77. (杨青, 王晨蔚. 基于深度学习LSTM神经网络的全球股票指数预测研究[J]. 统计研究, 2019, 36(03):65-77.)
    [21]
    Li Zhanshan, Liu Zhaogeng, Ding Guoxuan, et al. Feature Selection Algorithm Based on XGBoost[J]. Journal on Communications, 2019, 40(10):101-108. (李占山, 刘兆赓, 丁国轩, 等. 基于XGBoost的特征选择算法[J]. 通信学报, 2019, 40(10):101-108.)
    [22]
    Wang Deyun, Zhang Ludan, Wu Qi, et al. Flood Risk Assessment Based on Machine Learning Algorithms:A Case Study of Yichang City[J]. Resources and Environment in the Yangtze Basin, 2023, 32(08):1710-1723.(王德运, 张露丹, 吴祈, 等. 基于机器学习算法的洪涝灾害风险评估——以宜昌市为例[J]. 长江流域资源与环境, 2023, 32(08):1710-1723.)
    [23]
    The European Space Agency. Near Real-Time, Slow-Time Critical or Non-Time Critical?[EB/OL].[2023-10-17].https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-3-altimetry/product-types/nrt-or-ntc
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (713) PDF downloads (181) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return