CAO Hanrui, WANG Yan, LI Xi, HU Shensen, QIU Shi, WEI Yingce. Detecting Farmland Fire in VIIRS Night-time Light Images[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230256
Citation: CAO Hanrui, WANG Yan, LI Xi, HU Shensen, QIU Shi, WEI Yingce. Detecting Farmland Fire in VIIRS Night-time Light Images[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230256

Detecting Farmland Fire in VIIRS Night-time Light Images

More Information
  • Received Date: July 14, 2023
  • Available Online: December 28, 2023
  • Objectives: Night-time light images have been widely used in human activity analysis, social economy estimation and other aspects. However, on night-time light images, farmland fire pixels caused by burning fields are easily confused with the urban light pixels, which interferes with the socioeconomic assessments using night-time light images. Based on the radiance time series characteristics of pixels, the farmland fire pixels on night-time light images can be identified through the random forest method. Methods: In this study, 10 continental countries in southern Africa were taken as the research area. Based on Black Marble product produced by NPP/VIIRS data, three characteristics of the time series of night-time light radiance were constructed, and the random forest classification method was used to divide the pixels into farmland fire pixels, stable light pixels, and black pixels. Results: In this study, stratified random sampling was used to manually test the classification accuracy, using time series of nighttime light data, high resolution satellite images and land cover data. Results showed that the overall accuracy of pixel classification was 91.2%, the average producer accuracy was 91.9%, and the average user accuracy was 91.0%. Among them, the producer accuracy and user accuracy of farmland fire pixel classification were 86.4% and 92.6%, respectively. Conclusions: The random forest classification method was used to classify the pixels on night-time light images into farmland fire pixels, stable light pixels and black pixels with high accuracy. The method proposed in this study can be used to filter out farmland fire pixels in Black Marble products, so as to improve the evaluation accuracy for African social economy using night-light images.
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (177) PDF downloads (48) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return