DU Peijun, ZHANG Peng, GUO Shanchuan, TANG Pengfei, PAN Xiaoquan, MU Haowei. A Semantic Segmentation Model for Mapping Plastic Greenhouse Based on Spectral Index and High-Resolution Imagery[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1670-1683. DOI: 10.13203/j.whugis20230255
Citation: DU Peijun, ZHANG Peng, GUO Shanchuan, TANG Pengfei, PAN Xiaoquan, MU Haowei. A Semantic Segmentation Model for Mapping Plastic Greenhouse Based on Spectral Index and High-Resolution Imagery[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1670-1683. DOI: 10.13203/j.whugis20230255

A Semantic Segmentation Model for Mapping Plastic Greenhouse Based on Spectral Index and High-Resolution Imagery

More Information
  • Received Date: July 14, 2023
  • Available Online: October 10, 2023
  • Objectives 

    It is of great importance to precisely acquire the spatial distribution and dynamic variations of plastic greenhouses for agricultural development planning, grain assessment, and ecological environment monitoring. High-resolution remote sensing images offer detailed information of plastic greenhouse shapes and boundaries, satisfies the requirements of precision agriculture, and have irreplaceable advantages in conducting precise surveys of plastic greenhouses in crucial regions. Nevertheless, the mapping model of plastic greenhouses meets the challenges including inadequate prior information and unbalance between mapping accuracy and model complexity.

    Methods 

    This paper introduces a semantic segmentation model for plastic greenhouse that integrates the advanced plastic greenhouse index (APGI) and high-resolution red green blue (RGB) images. The proposed model primarily comprises the APGI semantic branch, RGB semantic branch, and RGB detail branch, and it incorporates an attention mechanism to effectively merge reliable prior information from the APGI index and spatial detail information derived from high-resolution RGB images. Furthermore, a model training mechanism guided by boundary information is proposed to enhance the precise recognition capability of the proposed model for plastic greenhouse boundary pixels.

    Results 

    The study reveals that, within an attention-guided fusion framework, the medium-resolution APGI can significantly enhance the identification capabilities of plastic greenhouses in high-resolution images. The proposed model can not only improve the mapping accuracy of plastic greenhouses but also greatly simplifie the parameter size and computational complexity of the semantic segmentation model.

    Conclusions 

    This study meets the demands for rapid and accurate extraction of plastic greenhouse in high-resolution remote sensing images.

  • [1]
    刘霓红, 蒋先平, 程俊峰, 等. 国外有机设施园艺现状及对中国设施农业可持续发展的启示[J]. 农业工程学报, 2018, 34(15): 1-9. doi: 10.11975/j.issn.1002-6819.2018.15.001

    Liu Nihong, Jiang Xianping, Cheng Junfeng, et al. Current Situation of Foreign Organic Greenhouse Horticulture and Its Inspiration for Sustainable Development of Chinese Protected Agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2018, 34(15): 1-9. doi: 10.11975/j.issn.1002-6819.2018.15.001
    [2]
    王兴, 康俊锋, 刘学军, 等. 设施农业典型地物改进Faster R-CNN识别方法[J]. 地球信息科学学报, 2019, 21(9): 1444-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201909015.htm

    Wang Xing, Kang Junfeng, Liu Xuejun, et al. Improving the Faster R-CNN Method for Recognizing Typical Objects of Modern Agriculture Based on Remote Sensing Imagery[J]. Journal of Geo-Information Science, 2019, 21(9): 1444-1454. https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201909015.htm
    [3]
    Baille A, López J C, Bonachela S, et al. Night Energy Balance in a Heated Low-cost Plastic Greenhouse[J]. Agricultural and Forest Meteorology, 2006, 137(1/2): 107-118.
    [4]
    Chang J, Wu X, Wang Y, et al. Does Growing Vegetables in Plastic Greenhouses Enhance Regional Ecosystem Services Beyond the Food Supply?[J]. Frontiers in Ecology and the Environment, 2013, 11(1): 43-49. doi: 10.1890/100223
    [5]
    Lu L Z, Di L P, Ye Y M. A Decision-tree Classifier for Extracting Transparent Plastic-Mulched Landcover from Landsat-5 TM Images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(11): 4548-4558. doi: 10.1109/JSTARS.2014.2327226
    [6]
    Yang D D, Chen J, Zhou Y, et al. Mapping Plastic Greenhouse with Medium Spatial Resolution Satellite Data: Development of a New Spectral Index[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017, 128: 47-60. doi: 10.1016/j.isprsjprs.2017.03.002
    [7]
    Hasituya, Chen Z X, Li F, et al. Mapping Plastic-mulched Farmland by Coupling Optical and Synthetic Aperture Radar Remote Sensing[J]. International Journal of Remote Sensing, 2020, 41(20): 7757-7778. doi: 10.1080/01431161.2020.1763510
    [8]
    Hu W Y, Huang B, Tian K, et al. Heavy Metals in Intensive Greenhouse Vegetable Production Systems Along Yellow Sea of China: Levels, Transfer and Health Risk[J]. Chemosphere, 2017, 167: 82-90. doi: 10.1016/j.chemosphere.2016.09.122
    [9]
    Levin N, Lugassi R, Ramon U, et al. Remote Sensing as a Tool for Monitoring Plasticulture in Agricultural Landscapes[J]. International Journal of Remote Sensing, 2007, 28(1): 183-202. doi: 10.1080/01431160600658156
    [10]
    Perilla G A, Mas J F. High-Resolution Mapping of Protected Agriculture in Mexico, Through Remote Sensing Data Cloud Geoprocessing[J]. European Journal of Remote Sensing, 2019, 52(1): 532-541. doi: 10.1080/22797254.2019.1686430
    [11]
    Ramos-Miras J J, Roca-Perez L, Guzmán-Palomino M, et al. Background Levels and Baseline Values of Available Heavy Metals in Mediterranean Greenhouse Soils (Spain)[J]. Journal of Geochemical Exploration, 2011, 110(2): 186-192. doi: 10.1016/j.gexplo.2011.05.009
    [12]
    冯权泷, 牛博文, 朱德海, 等. 2019年全国农业塑料大棚遥感分类数据集[J]. 中国科学数据, 2021, 6(4): 153-170. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202104015.htm

    Feng Quanlong, Niu Bowen, Zhu Dehai, et al. A Dataset of Remote Sensing-based Classification for Agricultural Plastic Greenhouses in China in 2019[J]. China Scientific Data, 2021, 6(4): 153-170. https://www.cnki.com.cn/Article/CJFDTOTAL-KXGZ202104015.htm
    [13]
    朱德海, 刘逸铭, 冯权泷, 等. 基于GEE的山东省近30年农业大棚时空动态变化研究[J]. 农业机械学报, 2020, 51(1): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202001018.htm

    Zhu Dehai, Liu Yiming, Feng Quanlong, et al. Spatial-Temporal Dynamic Changes of Agricultural Greenhouses in Shandong Province in Recent 30 Years Based on Google Earth Engine[J]. Transactions of the Chinese Society for Agricultural Machinery, 2020, 51(1): 168-175. https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX202001018.htm
    [14]
    胡琼, 吴文斌, 宋茜, 等. 农作物种植结构遥感提取研究进展[J]. 中国农业科学, 2015, 48(10): 1900-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201510005.htm

    Hu Qiong, Wu Wenbin, Song Qian, et al. Recent Progresses in Research of Crop Patterns Mapping by Using Remote Sensing[J]. Scientia Agricultura Sinica, 2015, 48(10): 1900-1914. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201510005.htm
    [15]
    Deng C B, Wu C S. BCI: A Biophysical Composition Index for Remote Sensing of Urban Environments[J]. Remote Sensing of Environment, 2012, 127: 247-259. doi: 10.1016/j.rse.2012.09.009
    [16]
    Zhao G X, Jing L I, Tao L I, et al. Utilizing Landsat TM Imagery to Map Greenhouses in Qingzhou, Shandong Province, China[J]. Pedosphere, 2004, 14(3): 363-369.
    [17]
    Aguilar M, Nemmaoui A, Novelli A, et al. Object-based Greenhouse Mapping Using very High Resolution Satellite Data and Landsat 8 Time Series[J]. Remote Sensing, 2016, 8(6): 513. doi: 10.3390/rs8060513
    [18]
    González-Yebra Ó, Aguilar M A, Nemmaoui A, et al. Methodological Proposal to Assess Plastic Greenhouses Land Cover Change from the Combination of Archival Aerial Orthoimages and Landsat Data[J]. Biosystems Engineering, 2018, 175: 36-51. doi: 10.1016/j.biosystemseng.2018.08.009
    [19]
    Zhang P, Du P J, Guo S C, et al. A Novel Index for Robust and Large-scale Mapping of Plastic Greenhouse from Sentinel-2 Images[J]. Remote Sensing of Environment, 2022, 276: 113042. doi: 10.1016/j.rse.2022.113042
    [20]
    Ma A L, Chen D Y, Zhong Y F, et al. National-scale Greenhouse Mapping for High Spatial Resolution Remote Sensing Imagery Using a Dense Object Dual-task Deep Learning Framework: A Case Study of China[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 181: 279-294. doi: 10.1016/j.isprsjprs.2021.08.024
    [21]
    Feng Q L, Niu B W, Chen B A, et al. Mapping of Plastic Greenhouses and Mulching Films from very High Resolution Remote Sensing Imagery Based on a Dilated and Non-local Convolutional Neural Network[J]. International Journal of Applied Earth Observation and Geoinformation, 2021, 102: 102441. doi: 10.1016/j.jag.2021.102441
    [22]
    Yuan X H, Shi J F, Gu L C. A Review of Deep Learning Methods for Semantic Segmentation of Remote Sensing Imagery[J]. Expert Systems with Applications, 2021, 169: 114417. doi: 10.1016/j.eswa.2020.114417
    [23]
    王宇, 杨艺, 王宝山, 等. 深度神经网络条件随机场高分辨率遥感图像建筑物分割[J]. 遥感学报, 2019, 23(6): 1194-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906017.htm

    Wang Yu, Yang Yi, Wang Baoshan, et al. Building Segmentation in High-Resolution Remote Sensing Image Through Deep Neural Network and Conditional Random Fields[J]. Journal of Remote Sensing, 2019, 23(6): 1194-1208. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906017.htm
    [24]
    Jung H, Choi H S, Kang M. Boundary Enhancement Semantic Segmentation for Building Extraction from Remote Sensed Image[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 60: 5215512.
    [25]
    吴强强, 王帅, 王彪, 等. 空间信息感知语义分割模型的高分辨率遥感影像道路提取[J]. 遥感学报, 2022, 26(9): 1872-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202209013.htm

    Wu Qiangqiang, Wang Shuai, Wang Biao, et al. Road Extraction Method of High-Resolution Remote Sensing Image on the Basis of the Spatial Information Perception Semantic Segmentation Model[J]. National Remote Sensing Bulletin, 2022, 26(9): 1872-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB202209013.htm
    [26]
    Lu X Y, Zhong Y F, Zheng Z, et al. Multi-scale and Multi-task Deep Learning Framework for Automatic Road Extraction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2019, 57(11): 9362-9377. doi: 10.1109/TGRS.2019.2926397
    [27]
    Abdollahi A, Pradhan B, Alamri A. SC-RoadDeepNet: A New Shape and Connectivity-Preserving Road Extraction Deep Learning-based Network from Remote Sensing Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5617815.
    [28]
    Li X T, You A S, Zhu Z, et al. Semantic Flow for Fast and Accurate Scene Parsing[C]//European Conference on Computer Vision. Cham: Springer, 2020: 775-793.
    [29]
    Luo Y, Huang L F, Sun B, et al. Deep Fusion of Spectral–Spatial Priors for Cropland Segmentation in Remote Sensing Images[J]. IEEE Geoscience and Remote Sensing Letters, 2022, 19: 2506205.
    [30]
    邵振峰, 孙悦鸣, 席江波, 等. 智能优化学习的高空间分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(2): 234-241. doi: 10.13203/j.whugis20200640

    Shao Zhenfeng, Sun Yueming, Xi Jiangbo, et al. Intelligent Optimization Learning for Semantic Segmentation of High Spatial Resolution Remote Sensing Images[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 234-241. doi: 10.13203/j.whugis20200640
    [31]
    杨军, 于茜子. 结合空洞卷积的FuseNet变体网络高分辨率遥感影像语义分割[J]. 武汉大学学报(信息科学版), 2022, 47(7): 1071-1080. doi: 10.13203/j.whugis20200305

    Yang Jun, Yu Xizi. Semantic Segmentation of High-Resolution Remote Sensing Images Based on Improved FuseNet Combined with Atrous Convolution[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 1071-1080. doi: 10.13203/j.whugis20200305
    [32]
    Pastorino M, Moser G, Serpico S B, et al. Semantic Segmentation of Remote-Sensing Images Through Fully Convolutional Neural Networks and Hierarchical Probabilistic Graphical Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 5407116.
    [33]
    Wang L B, Li R, Zhang C, et al. UNetFormer: A UNet-like Transformer for Efficient Semantic Segmentation of Remote Sensing Urban Scene Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2022, 190: 196-214.
    [34]
    Yang X, Li S S, Chen Z C, et al. An Attention-fused Network for Semantic Segmentation of Very-High-Resolution Remote Sensing Imagery[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2021, 177: 238-262.
    [35]
    Yuan Q Q, Shen H F, Li T W, et al. Deep Learning in Environmental Remote Sensing: Achievements and Challenges[J]. Remote Sensing of Environment, 2020, 241: 111716.
    [36]
    Yang Q C, Liu M, Zhang Z T, et al. Mapping Plastic Mulched Farmland for High Resolution Images of Unmanned Aerial Vehicle Using Deep Semantic Segmentation[J]. Remote Sensing, 2019, 11(17): 2008.
    [37]
    宋廷强, 张信耶, 李继旭, 等. 深度学习在多时相大棚提取应用研究[J]. 计算机工程与应用, 2020, 56(24): 242-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202024035.htm

    Song Tingqiang, Zhang Xinye, Li Jixu, et al. Research on Application of Deep Learning in Multi-temporal Greenhouse Extraction[J]. Computer Engineering and Applications, 2020, 56(24): 242-248. https://www.cnki.com.cn/Article/CJFDTOTAL-JSGG202024035.htm
    [38]
    Chen W, Xu Y M, Zhang Z, et al. Mapping Agricultural Plastic Greenhouses Using Google Earth Images and Deep Learning[J]. Computers and Electronics in Agriculture, 2021, 191: 106552.
    [39]
    Zhang X P, Cheng B, Chen J F, et al. High-Resolution Boundary Refined Convolutional Neural Network for Automatic Agricultural Greenhouses Extraction from GaoFen-2 Satellite Imageries[J]. Remote Sensing, 2021, 13(21): 4237.
    [40]
    Wu Z F, Shen C H, van den Hengel A. Real-time Semantic Image Segmentation via Spatial Sparsity[EB/OL]. [2017-06-15]. https://arxiv.org/abs/1712.00213.
    [41]
    Zhao H S, Qi X J, Shen X Y, et al. ICNet for Real-time Semantic Segmentation on High-Resolution Images[C]//European Conference on Computer Vision, Munich, Germany, 2018.
    [42]
    Ma N N, Zhang X Y, Zheng H T, et al. ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design[C]//European Conference on Computer Vision, Munich, Germany, 2018.
    [43]
    Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-scale Image Recognition[EB/OL]. [2014-03-12]. https://arxiv.org/abs/1409.1556
    [44]
    Hu J, Shen L, Sun G. Squeeze-and-Excitation Networks[C]//IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, USA, 2018.
    [45]
    Liu Q F, Su H, El-Khamy M, et al. DeepGBASS: Deep Guided Boundary-Aware Semantic Segmentation[C]//IIEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Singapore, 2022.
    [46]
    Chen L Y, Wu W W, Fu C C, et al. Weakly Supervised Semantic Segmentation with Boundary Exploration[C]//European Conference on Computer Vision, 2020, DOI: //10.1007/978-3-030-58574-7-21.
    [47]
    Yu B H, Song W, Lang Y Q. Spatial Patterns and Driving Forces of Greenhouse Land Change in Shouguang City, China[J]. Sustainability, 2017, 9(3): 359.
    [48]
    Novelli A, Aguilar M A, Nemmaoui A, et al. Performance Evaluation of Object Based Greenhouse Detection from Sentinel-2 MSI and Landsat 8 OLI Data: A Case Study from Almería (Spain)[J]. International Journal of Applied Earth Observation and Geoinformation, 2016, 52: 403-411.
    [49]
    Aguilar M, Vallario A, Aguilar F, et al. Object-based Greenhouse Horticultural Crop Identification from Multi-temporal Satellite Imagery: A Case Study in Almeria, Spain[J]. Remote Sensing, 2015, 7(6): 7378-7401.
    [50]
    Coslu M, Sonmez N K, Koc-San D. Object-based Greenhouse Classification from High Resolution Satellite Imagery: A Case Study Antalya-Turkey[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B7: 183-187.
    [51]
    Zhang Z X, Qian Z, Zhong T, et al. Vectorized Rooftop Area Data for 90 Cities in China[J]. Scientific Data, 2022, 9: 66.
    [52]
    He K M, Zhang X Y, Ren S Q, et al. Delving Deep into Rectifiers: Surpassing Human-level Performance on ImageNet Classification[C]//IEEE International Conference on Computer Vision, Santiago, Chile, 2015.
  • Related Articles

    [1]YANG Yuqi, CHEN Chi, YANG Bisheng, HU Pingbo, CUI Yang. 3D Change Detection of Buildings Based on Multi-level Segmentation of Dense Matching Point Clouds from UAV Images[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 489-496. DOI: 10.13203/j.whugis20190030
    [2]JI Shunping, LUO Chong, LIU Jin. A Review of Dense Stereo Image Matching Methods Based on Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 193-202. DOI: 10.13203/j.whugis20200620
    [3]WU Wei, SHEN Zhanfeng, WANG Xianwei, WU Tianjun, WANG Weihong. An Affine Invariant-based Match Propagation Method for Quasi-dense Image Registration[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 930-936. DOI: 10.13203/j.whugis20160146
    [4]QIU Yiming, LIAO Haibin, CHEN Qinghu. Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 275-281, 288. DOI: 10.13203/j.whugis20150298
    [5]WANG Fenfei, REN Xin, LIU Jianjun, SHI Jun, LI Chunlai. The Methods of CE-2 Image Dense Matching and Lunar DEM Extraction[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 918-923. DOI: 10.13203/j.whugis20150147
    [6]LI Chang, MA Hao, DONG Cailin. Unsupervised Tree Occlusion Removal for Close-Range Building Images Under Condition of Visible Light[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 612-616. DOI: 10.13203/j.whugis20140010
    [7]Jia Yi, Li Zhen. Reconstruction of Dense Point Cloud Using Space-patch Model from Sequence Images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(12): 1430-1434.
    [8]yao guobiao,  deng kazhong, ai haibin,  du quanye. an al gorithm of automatic quasi-dense matching and three-dimensionalreconstruction for oblique  stereo  images[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7): 843-849.
    [9]ZHANG Yeting, ZHU Qing. Occlusion Culling Method for Complex Objects Based on Component Visible Cone[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1245-1249.
    [10]Zheng Zhaobao. An Automatic Searching Method of the Image Occlusion[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 71-75.
  • Cited by

    Periodical cited type(3)

    1. 张艺潇,赵忠国,郑江华. 利用MARS估算不同气象要素组合下的参考作物蒸散量. 武汉大学学报(信息科学版). 2022(05): 789-798 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 薛晓琴,岳亚伟,夏磊,李丽,贺雄伟. 利用协同表示与神经网络的高光谱图像亚像元定位. 遥感信息. 2019(05): 69-75 .

    Other cited types(13)

Catalog

    Article views (514) PDF downloads (148) Cited by(16)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return