QIU Yiming, LIAO Haibin, CHEN Qinghu. Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 275-281, 288. DOI: 10.13203/j.whugis20150298
Citation: QIU Yiming, LIAO Haibin, CHEN Qinghu. Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 275-281, 288. DOI: 10.13203/j.whugis20150298

Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance

Funds: 

The Program of the Natural Science Foundation of Hubei Province 2017CFB300

the Hubei Provincial Education Department Science and Technology Research Projects Q20172805

the Hubei Provincial Education Science Plan Project 2016GB086

More Information
  • Author Bio:

    QIU Yiming, PhD, researcher, specializes in image processing and pattern recognition. E-mail: fhqim@sina.com

  • Corresponding author:

    LIAO Haibin, PhD, associate professor. E-mail: liao_haibing@163.com

  • Received Date: March 28, 2016
  • Published Date: February 04, 2018
  • This paper make full use of dictionary learning and sparse representation for signal reconstruction and classification, and present a two-step dictionary learning method and apply it to robust face pose recognition. The proposed approach models the appearance of face images from the subspace via K-SVD that learns the sub-dictionary from a set of images. A combination of the trained sub-dictionaries of all pose classes are used as an over-complete dictionary. Finally, the Gabor features are extracted for sparse representation and classification. In order to improve the classification ability, we put forward a two-step dictionary learning method, and carry out dictionary learning with label constraints in the second step. Additionally, in order to improve robustness against face occlusion, we introduce a pose occlusion dictionary to code the occluded portions of face images. Several experiments were performed on XJTU, PIE, and CAS-PEAL-R1 databases. Recognition results show that the proposed method can achieve a recognition rate of about 95% under illumination, noise, and occlusion variations. It can satisfy the requirements of practical applications.
  • [1]
    Srinivasan S, Boyer K L. Head Pose Estimation Using View Based Eigenspaces[C]. The 16th International Conference on Pattern Recognition, Quebec City, Canada, 2002
    [2]
    王华青. 基于局部几何结构的人脸图像姿态估计[D]. 西安: 西安电子科技大学, 2013

    Wang Huaqing. Face Pose Estimation with Local Geometry Preserving[D]. Xi'an: Xidian University, 2013
    [3]
    Lis Z. Learning Multi-view Face Subspaces and Facial Pose Estimation Using Independent Component Analysis[J].IEEE Trans. Image Process, 2005, 14(6):705-712 doi: 10.1109/TIP.2005.847295
    [4]
    Wu J, Trivedi M M. A Two-Stage Head Pose Estimation Framework and Valuation[J].Pattern Recognition, 2008, 41(5):1138-1158 http://www.sciencedirect.com/science/article/pii/S0031320307003366
    [5]
    Wang C, Song X B. Robust Head Pose Estimation Using Supervised Manifold Projection[C]. International Conference on Image Processing, USA, 2012: 161-164
    [6]
    Dou P F, Wu Y H, Shah S K, et al. Benchmarking 3D Pose Estimation for Face Recognition[C]. International Conference on Pattern Recognition, Stockholm, Sweden, 2014 doi: 10.1109/ICPR.2014.42
    [7]
    Akos P, Levente H. Precise 3D Pose Estimation of Human Faces[C]. The 9th International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 2014
    [8]
    Li D Q, Pedrycz W. A Central Profile-Based 3D Face Pose Estimation[J]. Pattern Recognition, 2014, 47(2):525-534 doi: 10.1016/j.patcog.2013.07.019
    [9]
    Muñoz-Salinas R, Yeguas-Bolivar E, Saffiotti A, et al. Multi-camera Head Pose Estimation[J]. Machine Vision and Applications, 2012, 23(3):479-490 doi: 10.1007/s00138-012-0410-z
    [10]
    Nuevo J, Bergasa L M, Jiménez P. RSMAT:Robust Simultaneous Modeling and Tracking[J].Pattern Recognition Letters, 2010, 31(16):2455-2463 doi: 10.1016/j.patrec.2010.07.016
    [11]
    陈振学, 常发亮, 刘春生, 等.基于Adaboost算法和人脸特征三角形的姿态参数估计[J].武汉大学学报·信息科学版, 2011, 36(10):1164-1167 http://ch.whu.edu.cn/CN/abstract/abstract691.shtml

    Chen Zhenxue, Chang Faliang, Liu Chunsheng, et al. Pose Parameters Estimate Based on AdaBoost Algorithm and Facial Feature Triangle[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1164-1167 http://ch.whu.edu.cn/CN/abstract/abstract691.shtml
    [12]
    Ma B P, Li A A, Chai X J, et al. CovGa:A novel Descriptor Based on Symmetry of Regions for Head Pose Estimation[J].Neurocomputing, 2014, 143:97-108 doi: 10.1016/j.neucom.2014.06.014
    [13]
    Chen X P, Yang Q Q, Liao H H, et al. Real-Time Face Pose Estimation in Video Sequence[C]. The Second International Workshop on Education Technology and Computer Science, Wuhan, 2010 http://dl.acm.org/citation.cfm?id=1797503
    [14]
    Zhang Y Y, Idrissi K, Garcia C. A Dictionary-learning Sparse Representation Framework for Pose Classification[C]. IEEE International Workshop on Machine Learning for Signal Processing, UK, 2013 http://ieeexplore.ieee.org/document/6661971/
    [15]
    Yang M, Zhang L, Shiu S C K, et al. Gabor Feature Based Robust Representation and Classification for Face Recognition with Gabor Occlusion Dictionary[J]. Pattern Recognition, 2013, 46(2):1865-1878 https://www.sciencedirect.com/science/article/pii/S0031320312002920
    [16]
    向金海, 樊恒, 徐俊, 等.基于局部稀疏表示的目标跟踪[J].华中科技大学学报(自然科学版), 2014, 42(7):187-193 http://dspace.xmu.edu.cn/handle/2288/123035?show=full

    Xiang Jinhai, Fan Heng, Xu Jun, et al. Object Tracking Based on Local Sparse Representation[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2014, 42(7):187-193 http://dspace.xmu.edu.cn/handle/2288/123035?show=full
    [17]
    Zhang Q, Li B. Discriminative K-SVD for Dictionary Learning in Face Recognition[C]. IEEE Conference on Computer Vision & Pattern Recognition, USA, 2010 https://asu.pure.elsevier.com/en/publications/discriminative-k-svd-for-dictionary-learning-in-face-recognition
    [18]
    Meng Yang, Luc Van Gool, Lei Zhang. Sparse Variation Dictionary Learning for Face Recognition with a Single Sample Per Person[C]. IEEE International Conference on Computer Vision, San Francisco, USA, 2013 doi: 10.1109/ICCV.2013.91
    [19]
    AI & R Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University. Oriental Face Database[EB/OL]. http://www.aiar.xjtu.edu.cn/groups/face/Chinese/Homepage.htm, 2013
    [20]
    The CMU PIE database[EB/OL]. http://www.ri.cmu.edu/projects/project_418.html, 2013
    [21]
    Gao W, Cao B, Shan S G, et al. The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[J]. IEEE Transaction on System Man, and Cybernetics (Part A), 2008, 38:149-161 doi: 10.1109/TSMCA.2007.909557
  • Related Articles

    [1]YUAN Hanxiao, TANG Qiuhua, AI Songtao, LIU Yang. Advanced Sparse Representation Techniques for Ocean Sound Velocity and Comparative Performance Analysis[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240282
    [2]LIAO Haibin, WANG Dianhua, CHEN Youbin. Face Age Estimation Based on Multi⁃layer Spare Representation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1233-1240. DOI: 10.13203/j.whugis20190126
    [3]LI Qingquan, WANG Huan, ZOU Qin. A Murals Inpainting Algorithm Based on Sparse Representation Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1847-1853. DOI: 10.13203/j.whugis20180217
    [4]LU Xuan, WANG Dingwen, SHI Wenxuan. Image Super-resolution with On-line Dictionary Learning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 719-725. DOI: 10.13203/j.whugis20150753
    [5]SUN Weiwei, JIANG Man, LI Weiyue. Band Selection Using Sparse Self-representation for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 441-448. DOI: 10.13203/j.whugis20150052
    [6]FANG Tianhong, CHEN Qinghu, YAN Yuchen, ZHOU Qianjin. Laser Print Document Identification Based on Gabor Feature and Sparse Representation Classification[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1550-1555. DOI: 10.13203/j.whugis20140896
    [7]LIAO Haibin, CHEN Youbin, CHEN Qinghu. Non-local Similarity Dictionary Learning Based Super-resolution for Improved Face Recognition[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1414-1420. DOI: 10.13203/j.whugis20140498
    [8]LIU Shuai, ZHU Yajie, XUE Lei. Remote Sensing Image Super-Resolution Method Using Sparse Representation and Classified Texture Patches[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5): 578-582. DOI: 10.13203/j.whugis20130385
    [9]Fang Tianhong, Chen Qinghu, Liao Haibin, Qiu Yiming. Face Feature Weighted by Fusing Texture and Shape[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 321-326+340.
    [10]LAN Chengdong, CHEN Liang, LU Tao. Face Super-resolution Using Sparse Representation with Position Weights[J]. Geomatics and Information Science of Wuhan University, 2013, 38(1): 27-30.
  • Cited by

    Periodical cited type(2)

    1. 廖海斌,王电化,陈友斌. 多层稀疏表达的人脸年龄估计. 武汉大学学报(信息科学版). 2021(08): 1233-1240 .
    2. 林凯瀚,赵慧民,吕巨建,詹瑾,刘晓勇,陈荣军. 基于Mask R-CNN的人脸检测与分割方法. 计算机工程. 2020(06): 274-280 .

    Other cited types(4)

Catalog

    Article views (2117) PDF downloads (590) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return