QIU Yiming, LIAO Haibin, CHEN Qinghu. Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 275-281, 288. DOI: 10.13203/j.whugis20150298
Citation: QIU Yiming, LIAO Haibin, CHEN Qinghu. Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 275-281, 288. DOI: 10.13203/j.whugis20150298

Occluded Face Pose Recognition Based on Dictionary Learning with Discrimination Performance

Funds: 

The Program of the Natural Science Foundation of Hubei Province 2017CFB300

the Hubei Provincial Education Department Science and Technology Research Projects Q20172805

the Hubei Provincial Education Science Plan Project 2016GB086

More Information
  • Author Bio:

    QIU Yiming, PhD, researcher, specializes in image processing and pattern recognition. E-mail: fhqim@sina.com

  • Corresponding author:

    LIAO Haibin, PhD, associate professor. E-mail: liao_haibing@163.com

  • Received Date: March 28, 2016
  • Published Date: February 04, 2018
  • This paper make full use of dictionary learning and sparse representation for signal reconstruction and classification, and present a two-step dictionary learning method and apply it to robust face pose recognition. The proposed approach models the appearance of face images from the subspace via K-SVD that learns the sub-dictionary from a set of images. A combination of the trained sub-dictionaries of all pose classes are used as an over-complete dictionary. Finally, the Gabor features are extracted for sparse representation and classification. In order to improve the classification ability, we put forward a two-step dictionary learning method, and carry out dictionary learning with label constraints in the second step. Additionally, in order to improve robustness against face occlusion, we introduce a pose occlusion dictionary to code the occluded portions of face images. Several experiments were performed on XJTU, PIE, and CAS-PEAL-R1 databases. Recognition results show that the proposed method can achieve a recognition rate of about 95% under illumination, noise, and occlusion variations. It can satisfy the requirements of practical applications.
  • [1]
    Srinivasan S, Boyer K L. Head Pose Estimation Using View Based Eigenspaces[C]. The 16th International Conference on Pattern Recognition, Quebec City, Canada, 2002
    [2]
    王华青. 基于局部几何结构的人脸图像姿态估计[D]. 西安: 西安电子科技大学, 2013

    Wang Huaqing. Face Pose Estimation with Local Geometry Preserving[D]. Xi'an: Xidian University, 2013
    [3]
    Lis Z. Learning Multi-view Face Subspaces and Facial Pose Estimation Using Independent Component Analysis[J].IEEE Trans. Image Process, 2005, 14(6):705-712 doi: 10.1109/TIP.2005.847295
    [4]
    Wu J, Trivedi M M. A Two-Stage Head Pose Estimation Framework and Valuation[J].Pattern Recognition, 2008, 41(5):1138-1158 http://www.sciencedirect.com/science/article/pii/S0031320307003366
    [5]
    Wang C, Song X B. Robust Head Pose Estimation Using Supervised Manifold Projection[C]. International Conference on Image Processing, USA, 2012: 161-164
    [6]
    Dou P F, Wu Y H, Shah S K, et al. Benchmarking 3D Pose Estimation for Face Recognition[C]. International Conference on Pattern Recognition, Stockholm, Sweden, 2014 doi: 10.1109/ICPR.2014.42
    [7]
    Akos P, Levente H. Precise 3D Pose Estimation of Human Faces[C]. The 9th International Conference on Computer Vision Theory and Applications, Lisbon, Portugal, 2014
    [8]
    Li D Q, Pedrycz W. A Central Profile-Based 3D Face Pose Estimation[J]. Pattern Recognition, 2014, 47(2):525-534 doi: 10.1016/j.patcog.2013.07.019
    [9]
    Muñoz-Salinas R, Yeguas-Bolivar E, Saffiotti A, et al. Multi-camera Head Pose Estimation[J]. Machine Vision and Applications, 2012, 23(3):479-490 doi: 10.1007/s00138-012-0410-z
    [10]
    Nuevo J, Bergasa L M, Jiménez P. RSMAT:Robust Simultaneous Modeling and Tracking[J].Pattern Recognition Letters, 2010, 31(16):2455-2463 doi: 10.1016/j.patrec.2010.07.016
    [11]
    陈振学, 常发亮, 刘春生, 等.基于Adaboost算法和人脸特征三角形的姿态参数估计[J].武汉大学学报·信息科学版, 2011, 36(10):1164-1167 http://ch.whu.edu.cn/CN/abstract/abstract691.shtml

    Chen Zhenxue, Chang Faliang, Liu Chunsheng, et al. Pose Parameters Estimate Based on AdaBoost Algorithm and Facial Feature Triangle[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10):1164-1167 http://ch.whu.edu.cn/CN/abstract/abstract691.shtml
    [12]
    Ma B P, Li A A, Chai X J, et al. CovGa:A novel Descriptor Based on Symmetry of Regions for Head Pose Estimation[J].Neurocomputing, 2014, 143:97-108 doi: 10.1016/j.neucom.2014.06.014
    [13]
    Chen X P, Yang Q Q, Liao H H, et al. Real-Time Face Pose Estimation in Video Sequence[C]. The Second International Workshop on Education Technology and Computer Science, Wuhan, 2010 http://dl.acm.org/citation.cfm?id=1797503
    [14]
    Zhang Y Y, Idrissi K, Garcia C. A Dictionary-learning Sparse Representation Framework for Pose Classification[C]. IEEE International Workshop on Machine Learning for Signal Processing, UK, 2013 http://ieeexplore.ieee.org/document/6661971/
    [15]
    Yang M, Zhang L, Shiu S C K, et al. Gabor Feature Based Robust Representation and Classification for Face Recognition with Gabor Occlusion Dictionary[J]. Pattern Recognition, 2013, 46(2):1865-1878 https://www.sciencedirect.com/science/article/pii/S0031320312002920
    [16]
    向金海, 樊恒, 徐俊, 等.基于局部稀疏表示的目标跟踪[J].华中科技大学学报(自然科学版), 2014, 42(7):187-193 http://dspace.xmu.edu.cn/handle/2288/123035?show=full

    Xiang Jinhai, Fan Heng, Xu Jun, et al. Object Tracking Based on Local Sparse Representation[J]. J. Huazhong Univ. of Sci. & Tech. (Natural Science Edition), 2014, 42(7):187-193 http://dspace.xmu.edu.cn/handle/2288/123035?show=full
    [17]
    Zhang Q, Li B. Discriminative K-SVD for Dictionary Learning in Face Recognition[C]. IEEE Conference on Computer Vision & Pattern Recognition, USA, 2010 https://asu.pure.elsevier.com/en/publications/discriminative-k-svd-for-dictionary-learning-in-face-recognition
    [18]
    Meng Yang, Luc Van Gool, Lei Zhang. Sparse Variation Dictionary Learning for Face Recognition with a Single Sample Per Person[C]. IEEE International Conference on Computer Vision, San Francisco, USA, 2013 doi: 10.1109/ICCV.2013.91
    [19]
    AI & R Institute of Artificial Intelligence and Robotics Xi'an Jiaotong University. Oriental Face Database[EB/OL]. http://www.aiar.xjtu.edu.cn/groups/face/Chinese/Homepage.htm, 2013
    [20]
    The CMU PIE database[EB/OL]. http://www.ri.cmu.edu/projects/project_418.html, 2013
    [21]
    Gao W, Cao B, Shan S G, et al. The CAS-PEAL Large-Scale Chinese Face Database and Baseline Evaluations[J]. IEEE Transaction on System Man, and Cybernetics (Part A), 2008, 38:149-161 doi: 10.1109/TSMCA.2007.909557
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (2116) PDF downloads (590) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return