Citation: | WANG Renjun, ZHENG Jianghua, LU Binbin, TUERXUN Nigela, LI Xiguang, LUO Lei. Estimating of SPAD value for jujube leaves at different growth stages using the Sentinel-2A image[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230065 |
[1] |
Xu M, Chen Q, Kong X, et al. Heavy metal contamination and risk assessment in winter jujube (Ziziphus jujuba Mill. cv. Dongzao)[J]. Food and Chemical Toxicology, 2023, 174:113645.
|
[2] |
Zhuo P, Li Y, Wang B, et al. Analysis and experimental study on vibration response characteristics of mechanical harvesting of jujube[J]. Computers and Electronics in Agriculture, 2022, 203:107446.
|
[3] |
Bai T, Zhang N, Mercatoris B, et al. Jujube yield prediction method combining Landsat 8 Vegetation Index and the phenological length[J]. Computers and Electronics in Agriculture, 2019, 162:1011-1027.
|
[4] |
Liu Y, Hatou K, Aihara T, et al. A robust vegetation index based on different UAV RGB images to estimate SPAD values of naked barley leaves[J]. Remote Sensing, 2021, 13(4):686.
|
[5] |
Fang Shenghui, Le Yuan, Liang Qi. Retrieval of Chlorophyll Content Using Continuous Wavelet Analysis Across a Range of Vegetation Species[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3):296-302.(方圣辉,乐源,梁琦.基于连续小波分析的混合植被叶绿素反演[J].武汉大学学报(信息科学版), 2015, 40(3):296-302.)
|
[6] |
Qin Zhanfei, Chang Qingrui, Shen Jian, et al. Red Edge Characteristics and SPAD Estimation Model Using Hyperspectral Data for Rice in Ningxia Irrigation Zone[J]. Geomatics and Information Science of Wuhan University, 2016, 41(9):1168-1175.(秦占飞,常庆瑞,申健,等.引黄灌区水稻红边特征及SPAD高光谱预测模型[J].武汉大学学报(信息科学版), 2016, 41(9):1168-1175.)
|
[7] |
Clevers J G P W, Kooistra L, Van den Brand e M M M. Using Sentinel-2A data for retrieving LAI and leaf and canopy chlorophyll content of a potato crop[J]. Remote Sensing, 2017, 9(5):405.
|
[8] |
Dong Zhe, Yang Wude, Zhang Meijun, et al. Estimation Models of Maize Leaf SPAD Value Based on Hyperspectral Remote Sensing[J]. Crops,2019,(03):126-131.(董哲,杨武德,张美俊,等.基于高光谱遥感的玉米叶片SPAD值估算模型研究[J].作物杂志,2019,(03):126-131.)
|
[9] |
Tang Xuguang, Song Kaishan, Liu Dianwei, et al. Comparison of methods for Estimating Soybean Chlorophyll Content Based on Visual/Near Infrared Reflection Spectra[J]. Spectroscopy and Spectral Analysis,2011,31(02):371-374.(汤旭光,宋开山,刘殿伟,等.基于可见/近红外反射光谱的大豆叶绿素含量估算方法比较[J].光谱学与光谱分析,2011,31(02):371-374.)
|
[10] |
Zhou Mingu, Shao Guomin, Zhang Liyuan, et al. Inversion of SPAD value of winter wheat by multispectral remote sensing of unmanned aerial vehicles[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020,36(20):125-133.(周敏姑,邵国敏,张立元,等.无人机多光谱遥感反演冬小麦SPAD值[J].农业工程学报,2020,36(20):125-133.)
|
[11] |
Liu Zhong, Wan Wei, Huang Jinyu, et al. Progress on key parameters inversion of crop growth based on unmanned aerial vehicle remote sensing[J]. Transactions of the Chinese Society of Agricultural Engineering,2018,34(24):60-71.(刘忠,万炜,黄晋宇,等.基于无人机遥感的农作物长势关键参数反演研究进展[J].农业工程学报,2018,34(24):60-71.)
|
[12] |
Sun Hong, Li Minzan, Zhao Yong, et al. The Spectral Characteristics and Chlorophyll Content at Winter Wheat Growth Stages[J]. Spectroscopy and Spectral Analysis,2010,30(01):192-196.(孙红,李民赞,赵勇,等.冬小麦生长期光谱变化特征与叶绿素含量监测研究[J].光谱学与光谱分析,2010,30(01):192-196.)
|
[13] |
Soudani K, François C, Maire L G, et al. Comparative analysis of IKONOS, SPOT, and ETM+data for leaf area index estimation in temperate coniferous and deciduous forest stands[J]. Remote Sensing of Environment,2006,102(1).
|
[14] |
Jia Yuqiu, Li Bing, Cheng Yongzheng, et al. Comparison between GF-1 images and Landsat-8 images in monitoring maize LAI. Trans actions of the Chinese Society of Agricultural Engineering,2015,31(09):173-179.(贾玉秋,李冰,程永政,等.基于GF-1与Landsat-8多光谱遥感影像的玉米LAI反演比较.农业工程学报,2015,31(09):173-179.)
|
[15] |
Cheng Qian. Estimation models of rice LAI and Chlorophyll content based on MOD09[J]. Chinese Journal of Applied Ecology,2006,(08):1453-1458.(程乾.基于MOD09产品的水稻叶面积指数和叶绿素含量的遥感估算模型[J].应用生态学报,2006,(08):1453-1458.)
|
[16] |
JIN Hua'an, LI Ainong, BIAN Jinhu, et al. Comparative Analysis of HJ-1B CCD2 and SPOT4 HRVIR Data for Aboveground Biomass Estimation in Forest Stands[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11):1483-1490. doi:10.13203/j.whugis20140594.(靳华安,李爱农,边金虎,等. HJ-1B CCD2与SPOT4 HRVIR数据在森林地上生物量反演中的比较分析[J].武汉大学学报(信息科学版), 2016, 41(11):1483-1490. doi:10.13203/j.whugis20140594)
|
[17] |
Wang Liai, Zhou Xudong, Zhu Xinkai, et al. Inverting wheat leaf area index based on HJ-CCD remote sensing data and random forest algorithm[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(03):149-154.(王丽爱,周旭东,朱新开,等.基于HJ-CCD数据和随机森林算法的小麦叶面积指数反演[J].农业工程学报,2016,32(03):149-154.)
|
[18] |
Yi Qiuxiang. Remote estimation of cotton LAI using Sentinel-2A multispectral data[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(16):189-197.(易秋香.基于Sentinel-2A多光谱数据的棉花叶面积指数估算[J].农业工程学报,2019,35(16):189-197.)
|
[19] |
Cui B, Zhao Q J, Huang W J, et al. Leaf chlorophyll content retrieval of wheat by simulated RapidEye, Sentinel-2A and EnMAP data[J]. Journal of Integrative Agriculture,2019, 18(06):1230-1245.
|
[20] |
Qian B X, Ye H C, Huang W J, et al. A Sentinel-2A-based triangular vegetation index for chlorophyll content estimation[J]. Agricultural and Forest Meteorology,2022,322.
|
[21] |
Dong L, Chen J M, Zhang X, et al. Improved estimation of leaf chlorophyll content of row crops from canopy reflectance spectra through minimizing canopy structural effects and optimizing off-noon observation time[J]. Remote Sensing of Environment,2020,248.
|
[22] |
Xu Yunfei, Cheng Qi, Wei Xiangping, et al. Monitoring of winter wheat growth under UAV using variation method and optimized neural network[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(20):71-80.(徐云飞,程琦,魏祥平,等.基于变异系数法和优化神经网络的无人机冬小麦长势监测[J].农业工程学报,2021,37(20):71-80.)
|
[23] |
Issa S, Dahy B, Saleous N, et al. Carbon stock assessment of date palm using remote sensing coupled with field-based measurements in Abu Dhabi (United Arab Emirates)[J]. International Journal of Remote Sensing,2019,40(19).
|
[24] |
Zhang Dongyan, Yang Yuying, Huang Lisheng, et al. Extraction of soybean planting area s combining Sentinel-2A images and optimize d feature model[J]. Transactions of the Chinese Society of Agricultural Engineering,2021, 37(09):110-119.(张东彦,杨玉莹,黄林生,等.结合Sentinel-2A影像和特征优选模型提取大豆种植区[J].农业工程学报,2021,37(09):110-119.)
|
[25] |
Li Miaomiao, Wu Bingfang, Yan Changzhen, et al. Estimation of Vegetation Fraction in the Upper Basin of Miyun Reservoir by Remote Sensing[J]. Resources science, 2004,(04):153-159.(李苗苗,吴炳方,颜长珍,等.密云水库上游植被覆盖度的遥感估算[J].资源科学,2004,(04):153-159.)
|
[26] |
Ru Jingna, Yu Yang, Dong Fanfan, et al. Analysis of QTL for Heading Date and Interaction Effects with Environments in Wheat[J]. Journal of Triticeae Crops,2014,34(09):1185-1190.(茹京娜,于洋,董凡凡,等.小麦抽穗期QTL及其与环境的互作[J].麦类作物学报,2014,34(09):1185-1190.)
|
[27] |
Tuerxun Nigela, Naibi Sulei, Gao Jian, et al. Chlorophyll Content Estimation of Jujube Leaves Based on GWLS-SVR Mosel[J]. Spectroscopy and Spectral Analysis, 2021,41(06):1730-1736.(尼格拉·吐尔逊,苏磊·乃比,高健,等. GWLS-SVR模型的红枣树叶片叶绿素含量估算[J].光谱学与光谱分析,2021,41(06):1730-1736.)
|
[28] |
Jiang Fugen, Sun Hua, Li Chengjie, et al. Retrieving the forest above ground biomass by combining the red edge bands of Sentinel-2A and GF-6[J]. ACTA ECOLOGICA SINICA,2021,41(20):8222-8236.(蒋馥根,孙华,李成杰,等.联合GF-6和Sentinel-2A红边波段的森林地上生物量反演[J].生态学报,2021,41(20):8222-8236.)
|
[29] |
Gu Feng, Ding Jianli, Ge Xiangyu, et al. Estimation of Chlorophyll Content of Typical Oasis Vegetation in Arid Area Based on Sentinel-2 Data. ARID ZONE RESEARCH,2019,36(04):924-934.(顾峰,丁建丽,葛翔宇,等.基于Sentinel-2A数据的干旱区典型绿洲植被叶绿素含量估算.干旱区研究,2019,36(04):924-934.)
|
[30] |
Zhen Jianing, Jiang Xiapeng, Zhao Demei, et al. Retrieving canopy nitrogen content of mangrove forests from Sentinel-2A super-resolution reconstruction data[J]. National Remote Sensing Bulletin, 2022, 26(6):1206-1219.(甄佳宁,蒋侠朋,赵德梅,王俊杰,苗菁,邬国锋.利用Sentinel-2A影像超分辨率重建的红树林冠层氮含量反演[J].遥感学报,2022,26(06):1206-1219.)
|
[31] |
Zhang Y M, Ta N, Guo S, et al. Combining Spectral and Textural Information from UAV RGB Images for Leaf Area Index Monitoring in Kiwifruit Orchard[J]. Remote Sensing,2022,14(5).
|
[32] |
Han Zhaoying, Zhu Xicun, Fang Xianyi, et al. Hyperspectral Estimation of Apple Tree Canopy LAI Based on SVM and RF Regression. Spectroscopy and Spectral Analysis,2016,36(03):800-805.(韩兆迎,朱西存,房贤一,等.基于SVM与RF的苹果树冠LAI高光谱估测.光谱学与光谱分析,2016,36(03):800-805.)
|
[33] |
Li Fengling, Wang Li, Liu Jing, et al. Remote Sensing Estimation of SPAD Value for Wheat Leaf Based on GF-1 Data. Transactions of the Chinese Society for Agricultural Machinery,2015,46(09):273-281.(李粉玲,王力,刘京,等.基于高分一号卫星数据的冬小麦叶片SPAD值遥感估算.农业机械学报,2015,46(09):273-281.)
|
[34] |
Breiman L. Random Forests[J]. Machine Learning,2001,45(1).
|
[35] |
Jiang Hailing, Yang Hang, Chen Xiaoping, et al. Research on Accuracy and Stability of Inversing Vegetation Chlorophyll Content by Spectral Index Method. Spectroscopy and Spectral Analysis,2015,35(04):975-981.(姜海玲,杨杭,陈小平,等.利用光谱指数反演植被叶绿素含量的精度及稳定性研究.光谱学与光谱分析,2015,35(04):975-981.)
|
[36] |
Yu K, Lenz-Wiedemann V, Chen X, et al. Estimating leaf chlorophyll of barley at different growth stages using spectral indices to reduce soil background and canopy structure effects[J]. ISPRS Journal of Photogrammetry and Remote Sensing,2014,97.
|
[37] |
Zhang M, Su W, Fu Y, et al. Super-resolution enhancement of Sentinel-2A image for retrieving LAI and chlorophyll content of summer corn[J]. European Journal of Agronomy,2019,111(C)
|
[1] | HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690 |
[2] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168 |
[3] | GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167 |
[4] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[5] | LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627 |
[6] | LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277. |
[7] | XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829. |
[8] | ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281. |
[9] | JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434. |
[10] | Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742 |