HUA Zhonghao, LIU Lintao, LIANG Xinghui. An Assessment of GPT2w Model and Fusion of a Troposphere Model with in Situ Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1468-1473. DOI: 10.13203/j.whugis20150758
Citation: HUA Zhonghao, LIU Lintao, LIANG Xinghui. An Assessment of GPT2w Model and Fusion of a Troposphere Model with in Situ Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1468-1473. DOI: 10.13203/j.whugis20150758

An Assessment of GPT2w Model and Fusion of a Troposphere Model with in Situ Data

Funds: 

The Special Fund Protect of Major Scientific Instrument and Equipment Development 2011YQ120045

the Natural Science Foundation of China 41304023

More Information
  • Author Bio:

    HUA Zhonghao, postgraduate, specializes in the precise data analysis of GNSS and GNSS meteorology. E-mail:sucfay@gmail.com

  • Corresponding author:

    LIU Lintao, PhD, professor. E-mail: llt@asch.whigg.ac.cn

  • Received Date: May 15, 2016
  • Published Date: October 04, 2017
  • GPT2w is used to estimate slant tropospheric delay, and considered the best empirical model based on its nominal accuracy. Besides the model value of ZHD, this model delivers a blind value for meteorological parameters. We used the database from USNO to validate the marked accuracy of the model, and data from IGRA to access the accuracy of the blind meteorological elements. A system bias from Tm was detected. After the correction of this bias, the bias of model ZTD against the USNO ZTD rose from-1.38 mm to-0.3 mm. This paper presents a fusion of blind model and the in situ data. The input parameters of this new method are in situ P, t and hr, the corrected blind Tm and λ. This method performs better than the modified GPT2w model because of the in situ data, better than the Saast model as it profits from a improved ZWD model. Without the in situ data, the modified GPT2w is a good choice. If with available in situ data, the fusion method is recommended.
  • [1]
    Böhm J, Schuh H. Atmospheric Effects in Space Geodesy[M]. Berlin: Springer, 2013
    [2]
    Bevis M, Businger S, Herring T, et al. GPS Mete-orology Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research, 1992, 97(D14): 15 787-15 801 doi: 10.1029/92JD01517
    [3]
    Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[J]. The Use of Artificial Satellites for Geodesy, 1972: 247-251 doi: 10.1029/GM015p0247/summary
    [4]
    Askne J, Nordius H. Estimation of Tropospheric Delay for Microwaves from Surface Weather Data[J]. Radio Science, 1987, 22(3): 379-386 doi: 10.1029/RS022i003p00379
    [5]
    Schüler T. The Trop Grid2 Standard Tropospheric Correction Model[J]. GPS Solutions, 2014, 18(1): 123-131 doi: 10.1007/s10291-013-0316-x
    [6]
    Li W, Yuan Y, Ou J, et al. New Versions of the BDS/GNSS Zenith Tropospheric Delay Model IGGtrop[J]. Journal of Geodesy, 2015, 89(1): 73-80 doi: 10.1007/s00190-014-0761-5
    [7]
    Möller G, Weber R, Böhm J. Improved Troposphere Blind Models Based on Numerical Weather Data[J]. Navigation, 2014, 61(3): 203-211 doi: 10.1002/navi.v61.3
    [8]
    Böhm J, Möller G, Schindelegger M, et al. Development of an Improved Empirical Model for Slant Delays in the Troposphere (GPT2w)[J]. GPS Solutions, 2015, 19(3): 433-441 doi: 10.1007/s10291-014-0403-7
    [9]
    Yao Y, Xu C, Shi J, et al. ITG: A New Global GNSS Tropospheric Correction Model[J]. Scien-tific Reports, 2015, 5: 10273 doi: 10.1038/srep10273
    [10]
    Nafisi V, Madzak M, Böhm J, et al. Ray-traced Tropospheric Delays in VLBI Analysis[J]. Radio Science, 2012, 47(2): RS2020 doi: 10.1029/2011RS004918/abstract
    [11]
    姚宜斌, 刘劲宏, 张豹, 等.地表温度与加权平均温度的非线性关系[J].武汉大学学报·信息科学版, 2015, 40(1): 112-116 http://ch.whu.edu.cn/CN/abstract/abstract3174.shtml

    Yao Yibin, Liu Jinhong, Zhang Bao, et al. Nonlinear Relationships Between the Surface Temperature and the Weighted Mean Temperature[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 112-116 http://ch.whu.edu.cn/CN/abstract/abstract3174.shtml
    [12]
    王晓英, 戴仔强, 曹云昌, 等.中国地区地基GPS加权平均温度Tm统计分析[J].武汉大学学报·信息科学版, 2011, 36(4): 412-416 http://ch.whu.edu.cn/CN/abstract/abstract524.shtml

    Wang Xiaoying, Dai Ziqiang, Cao Yunchang, et al. Weighted Mean Temperature Tm Statistical Analysis in Ground-based GPS in China[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 412-416 http://ch.whu.edu.cn/CN/abstract/abstract524.shtml
    [13]
    Yao Y, Zhang B, Xu C, et al. Analysis of the Global Tm-Ts Correlation and Establishment of the Latitude-related Linear Model[J]. Chinese Science Bulletin, 2014, 59(19): 2 340-2 347 doi: 10.1007/s11434-014-0275-9
    [14]
    Böhm J, Heinkelmann R, Schuh H. Short Note: A Global Model of Pressure and Temperature for Geodetic Applications[J]. Journal of Geodesy, 2007, 81(10): 679-683 doi: 10.1007/s00190-007-0135-3
    [15]
    Barthelmes F. Definition of Functionals of the Geopotential and Their Calculation from Spherical Harmonic Models: Theory and Formulas Used by the Calculation Service of the International Centre for Global Earth Models (ICGEM)[OL]. http://ic-gem.gfz-potsdam.de/ICGEM[J]. 2013
  • Related Articles

    [1]ZHOU Fangbin, ZOU Lianhua, LIU Xuejun, MENG Fanyi. Micro Landform Classification Method of Grid DEM Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(8): 1186-1193. DOI: 10.13203/j.whugis20190311
    [2]ZOU Kun, WO Yan, XU Xiang. A Feature Significance-Based Method to Extract Terrain Feature Lines[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 342-348. DOI: 10.13203/j.whugis20150373
    [3]CAO Zhenzhou, LI Manchun, CHENG Liang, CHEN Zhenjie. Progressive Transmission of Vector Curve Data over InternetCAO ZhenzhouLI Manchun[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 475-479.
    [4]ZHENG Shunyi, HU Hualiang, HUANG Rongyong, JI Zheng. Realtime Ranging of Power Transmission Line[J]. Geomatics and Information Science of Wuhan University, 2011, 36(6): 704-707.
    [5]AI Bo, AI Tinghua, TANG Xinming. Progressive Transmission of River Network[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 51-54.
    [6]LIU Yan, LIU Jingnan, LI Tao, XIA Ye. Monitoring Damage of State Grid Transmission Tower in Bad Weather by High-Resolution SAR Satellites[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1354-1358.
    [7]YIN Hui, ZHANG Xiaohong, ZHANG Xiaowu, LIU Xingfa. Interference Analysis to Aerial Flight Caused by UHV Lines Using Airborne GPS[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 774-777.
    [8]WANG Cheng, HU Peng, LIU Xiaohang, LI Yunxiang. Automated Classification of Martian Landforms Based on Digital Terrain Analysis(DTA) Technology[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 483-487.
    [9]ZHENG Jingjing, FANG Jinyun, HAN Chengde. Progressive Transmission Method of DEM Data Based on JPEG2000 Lossless-Compression[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 395-399.
    [10]WANG Wei, DU Daosheng, XIONG Hanjiang, ZHONG Jing. 3D Modeling and Data Organization of Power Transmission[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 986-990.
  • Cited by

    Periodical cited type(7)

    1. 邱龙. 基于无人机测绘图像的大面积地形变化特征提取方法. 北京测绘. 2024(06): 930-935 .
    2. 邓颖,蒋兴良,张志劲,曾蕴睿,马龙飞. 基于DEM分析的输电线路覆冰微地形分类识别及验证方法. 高电压技术. 2024(11): 4971-4980 .
    3. 巩鑫龙,田瑞,王孟. 220?kV正兰甲线所在微地形区域风场特性研究. 电力安全技术. 2024(11): 47-51 .
    4. 董慎学,石峰,刘刚,王有威,徐兆国. 垭口地形对输电线路风场分布特性影响分析. 重庆理工大学学报(自然科学). 2023(06): 340-346 .
    5. 吴建蓉,文屹,张啟黎,何锦强,张厚荣,龚博. 基于GIS的易覆冰微地形分类提取算法与三维应用. 高电压技术. 2023(S1): 1-5 .
    6. 周访滨,钟绍平,朱衍哲,杨自强,马国伟. 顾及爆燃地形特征的峡谷分级提取方法. 测绘科学. 2023(09): 89-98 .
    7. 胡京,邓颖,蒋兴良,曾蕴睿. 输电线路覆冰垭口微地形的特征提取与识别方法. 中国电力. 2022(08): 135-142 .

    Other cited types(0)

Catalog

    Article views (2467) PDF downloads (474) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return