Zhang Wei, Ji Chenjia, Li Wenkai, Sun Xiaona, Liang Tianxin, Han Songjie, Wei Hongfei. Spatial Super-Resolution Reconstruction of Remote Sensing Precipitation Products Using Generative Adversarial Network by Multi-Source Fused Precipitation Data Features[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230013
Citation: Zhang Wei, Ji Chenjia, Li Wenkai, Sun Xiaona, Liang Tianxin, Han Songjie, Wei Hongfei. Spatial Super-Resolution Reconstruction of Remote Sensing Precipitation Products Using Generative Adversarial Network by Multi-Source Fused Precipitation Data Features[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230013

Spatial Super-Resolution Reconstruction of Remote Sensing Precipitation Products Using Generative Adversarial Network by Multi-Source Fused Precipitation Data Features

More Information
  • Received Date: September 24, 2023
  • Available Online: May 17, 2024
  • Objectives: High-resolution precipitation data is one of the important basic data for studying water and energy cycles at regional scales, but the spatial resolution of existing precipitation products cannot yet meet the needs of regional refinement studies. Methods: This paper makes full use of the high spatial resolution (5 km) feature of the fused precipitation data (CMPA) from the National Intelligent Grid Live Analysis product to construct a two sets of superresolution reconstruction model based on Generative Adversarial Networks, which is applied to the spatial downscaling of the IMERG (The Integrated Multi-satellite Retrievals for GPM) daily precipitation data and ERA5 (The fifth generation ECMWF atmospheric reanalysis) daily precipitation reanalysis data, respectively. The final high-resolution IMERG daily precipitation product (0.05°) and ERA5 daily precipitation product (0.125°) were obtained and the accuracy of both downscaled data was evaluated using measured meteorological station data. Results: The results show that (1) The super-resolution reconstruction model based on CMPA data can be used for spatial downscaling of other precipitation products. The reconstructed IMERG products and ERA5 products show different degrees of improvement in all accuracy indicators. (2) The model is able to effectively retain the essential data characteristics of the CMPA data. The reconstructed IMERG product and ERA5 product are more closely matched to the CMPA data in terms of CC, POD and Bias, with higher overall accuracy. (3) The effect of model reconstruction is influenced by the spatial resolution and accuracy of the original data, as well as the correlation between the original data and the CMPA data. The higher the spatial resolution and accuracy of the raw data, the better the correlation between the raw data and the training data set, and the better the downscaling effect. As a result, the application on the IMERG product is significantly better than the EAR5 product. (4) The GAN model constructed in this paper outperforms the MF and RF models in terms of applicability to IMERG daily precipitation data, and its detailed reconstruction is better. Compared with the original IMERG data, the accuracy statistics of the GAN reconstructed daily precipitation in the three time dimensions of year, season and month are mostly improved, which indicates better model stability. Conclusions: Therefore, the GAN model constructed in this paper is able to provide a more refined precipitation distribution and is of some research value.
  • Related Articles

    [1]HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690
    [2]HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168
    [3]GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167
    [4]TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176
    [5]LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627
    [6]LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277.
    [7]XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829.
    [8]ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281.
    [9]JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434.
    [10]Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742

Catalog

    Article views (193) PDF downloads (54) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return