Citation: | SONG Minfeng, HE Xiufeng, WANG Xiaolei, LI Weiqiang. A New Initialization Method for Specular Points and Space Paths Computation in Spaceborne GNSS-R[J]. Geomatics and Information Science of Wuhan University, 2024, 49(1): 131-138. DOI: 10.13203/j.whugis20220789 |
In response to the problem of large initialization errors in specular point and geometric path computations in earth observation technology using global navigation satellite system-reflectometry(GNSS-R), an efficient new method for initializing multi-system spaceborne GNSS-R specular point estimation and geometric path computation is proposed.
Based on a large number of simulated spaceborne GNSS-R reflection events, the ratio of the distance, between the projection point of the truth specular point on the direct path of the signal to the two satellites, and the geocentric angle of the reflection event under fixed orbit conditions is modeled using polynomials. Furthermore, the variation trend of these model coefficients with different GNSS satellite orbit heights is fitted to obtain a model of the variation of parameter coefficients with GNSS orbit heights, thus establishing the new initialization method.
The results of experiments based on multi-system multi-orbit GNSS-R simulation data show that the initialization accuracy of the new model is improved from hundreds or even thousands of kilometers to about 5 km compared with the existing methods, and the comparison experiments also demonstrate that the proposed method could improve the calculation efficiency of the mainstream iterative method by 79.1% in grazing observation.
[1] |
Zavorotny V U, Gleason S, Cardellach E, et al. Tutorial on Remote Sensing Using GNSS Bistatic Radar of Opportunity[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(4): 8-45.
|
[2] |
Guo Fei, Chen Weijie, Zhu Yifan, et al. A GNSS-IR Soil Moisture Inversion Method Integrating Phase, Amplitude and Frequency[J].Geomatics and Information Science of Wuhan University,2022,DOI: 10.13203/j.whugis20210644.(郭斐, 陈惟杰, 朱逸凡,等. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法[J]. 武汉大学学报 (信息科学版), 2022,DOI:10.13203/j.whugis20210644.
|
[3] |
Carreno-Luengo H, Crespo J A, Akbar R, et al. The CYGNSS Mission: On-going Science Team Investigations[J]. Remote Sensing, 2021, 13(9): 1814.
|
[4] |
Nguyen V A, Nogués-Correig O, Yuasa T, et al. Initial GNSS Phase Altimetry Measurements from the Spire Satellite Constellation[J]. Geophysical Research Letters, 2020, DOI:10.1029/2020GL088308.
|
[5] |
Asgarimehr M, Arnold C, Weigel T, et al. GNSS Reflectometry Global Ocean Wind Speed Using Deep Learning: Development and Assessment of CyGNSSnet[J]. Remote Sensing of Environment, 2022, 269: 112801.
|
[6] |
杜皓, 郭文飞, 郭迟, 等. 针对GNSS-R海面风速反演的自适应CDF匹配方法[J]. 武汉大学学报(信息科学版), 2021, 46(12): 1924-1931.
Du Hao, Guo Wenfei, Guo Chi, et al. Adaptively CDF Matching Method in GNSS-R Wind Speed Retrieval[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1924-1931.
|
[7] |
Zhu Y C, Tao T Y, Yu K G, et al. Machine Learning-Aided Sea Ice Monitoring Using Feature Sequences Extracted from Spaceborne GNSS-Reflectometry Data[J]. Remote Sensing, 2020, 12(22): 3751.
|
[8] |
Li W Q, Cardellach E, Fabra F, et al. First Spaceborne Phase Altimetry over Sea Ice Using TechDemoSat-1 GNSS-R Signals[J]. Geophysical Research Letters, 2017, 44(16): 8369-8376.
|
[9] |
何秀凤, 王杰, 王笑蕾, 等. 利用多模多频GNSS-IR信号反演沿海台风风暴潮[J]. 测绘学报, 2020, 49(9): 1168-1178.
He Xiufeng, Wang Jie, Wang Xiaolei, et al. Retrieval of Coastal Typhoon Storm Surge Using Multi-GNSS-IR[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(9): 1168-1178.
|
[10] |
杨磊. GNSS-R农田土壤湿度反演方法研究[J].泰安:山东农业大学, 2017.
Yang Lei. Study of GNSS-R Cropland Soil Moisture Retrieval Method[D]. Taian:Shandong Agricultural University, 2017.
|
[11] |
Al-Khaldi M M, Johnson J T. Soil Moisture Retrievals Using CYGNSS Data in a Time-Series Ratio Method: Progress Update and Error Analysis[J]. IEEE Geoscience and Remote Sensing Letters, 2021, 19: 3003505.
|
[12] |
Wu Xuerui, Song Shaohui, Ma Wenxiao, et al. A Review of GNSS-R/SoOP-R for Essential Hydrological Climate Variables Detection[J].Geomatics and Information Science of Wuhan University,2023,DOI: 10.13203/j.whugis20220685. (吴学睿, 宋少辉, 马文骁,等. 典型水循环参数星载GNSS-R/SoOP-R遥感探测的研究现状[J]. 武汉大学学报 (信息科学版),2023,DOI:10.13203/j.whugis20220685.)
|
[13] |
Hu Y F, Wang J, Li Z H, et al. Ground Surface Elevation Changes over Permafrost Areas Revealed by Multiple GNSS Interferometric Reflectometry[J]. Journal of Geodesy, 2022, 96(8): 56.
|
[14] |
Carreno-Luengo H, Ruf C S. Retrieving Freeze/Thaw Surface State from CYGNSS Measurements[J]. IEEE Transactions on Geoscience and Remote Sensing, 2022, 60: 4302313.
|
[15] |
刘奇, 张双成, 南阳, 等. 利用星载GNSS-R相干信号探测南亚洪水[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1641-1648.
Liu Qi, Zhang Shuangcheng, Yang Nan, et al. Flood Detection of South Asia Using Spaceborne GNSS-R Coherent Signals[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1641-1648.
|
[16] |
王峰, 杨东凯, 张波. 星载GNSS反射信号时-空性能仿真分析[J]. 电子与信息学报, 2022, 44(2): 760-766.
Wang Feng, Yang Dongkai, Zhang Bo. Spatiotemporal Performance of Spaceborne Global Navigation Satellites System Reflectometry[J]. Journal of Electronics & Information Technology, 2022, 44(2): 760-766.
|
[17] |
Ruf C S, Atlas R, Chang P S, et al. New Ocean Winds Satellite Mission to Probe Hurricanes and Tropical Convection[J]. Bulletin of the American Meteorological Society, 2016, 97(3): 385-395.
|
[18] |
Roesler C J, Morton Y J, Wang Y, et al. Coherent GNSS-Reflections Characterization over Ocean and Sea Ice Based on Spire Global CubeSat Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 1918, 60: 5801918.
|
[19] |
刘经南, 邵连军, 张训械. GNSS-R研究进展及其关键技术[J]. 武汉大学学报(信息科学版), 2007, 32(11): 955-960.
Liu Jingnan, Shao Lianjun, Zhang Xunxie. Advances in GNSS-R Studies and Key Technologies[J]. Geomatics and Information Science of Wuhan University, 2007, 32(11): 955-960.
|
[20] |
Gleason S. A Real-Time On-orbit Signal Tracking Algorithm for GNSS Surface Observations[J]. Remote Sensing, 2019, 11(16): 1858.
|
[21] |
Dielacher A, Fragner H, Koudelka O. PRETTY—Passive GNSS-Reflectometry for CubeSats[J]. Elektrotechnik und Information Stechnik, 2022, 139(1): 25-32.
|
[22] |
Song M F, He X F, Asgarimehr M, et al. Investigation on Geometry Computation of Spaceborne GNSS-R Altimetry over Topography: Modeling and Validation[J]. Remote Sensing, 2022, 14(9): 2105.
|
[23] |
孙小荣, 刘支亮, 郑南山, 等. 两种新的GNSS-R镜面反射点位置估计算法[J]. 中国矿业大学学报, 2017, 46(4): 917-923.
Sun Xiaorong, Liu Zhiliang, Zheng Nanshan, et al. Two New Algorithms for Position Estimation of GNSS-R Specular Reflection Point[J]. Journal of China University of Mining & Technology, 2017, 46(4): 917-923.
|
[24] |
Wu S C, Meehan T, Young L, et al. The Potential Use of GPS Signals as Ocean Altimetry Observable 1997 National Technical Meeting [J]. Jet Propulsion, 1997.
|
[25] |
PhilipJ A. Spaceborne Receiver Design for Scatterometric GNSS Reflectometry[D]. Guildford: University of Surrey, 2012.
|
[26] |
Southwell B J, Dempster A G. A New Approach to Determine the Specular Point of Forward Reflected GNSS Signals[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(2): 639-646.
|
[27] |
Marsaglia G, Bray T A. A Convenient Method for Generating Normal Variables[J]. SIAM Review, 1964, 6(3): 260-264.
|
[28] |
FabraF, CardellachE, LiW Q, et al. WAVPY: A GNSS-R Open Source Software Library for Data Analysis and Simulation[C]//IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, USA, 2017.
|
[29] |
Gleason S, Gebre-Egziabher D. GNSS Applications and Methods[M]. Norwood: Artech House, 2009.
|
[1] | HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281 |
[2] | CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828 |
[3] | LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649 |
[4] | CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089 |
[5] | XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630 |
[6] | HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454. |
[7] | YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216. |
[8] | YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914. |
[9] | DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171. |
[10] | YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107. |