Citation: | SUN Wenzhou, ZHU Yi, ZENG Anmin, ZHAO Xiang. A self-adaptive layering method of the sound velocity profile for deep-water object positioning[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220662 |
[1] |
Kinugasa N, Tadokoro K, Kato T, et al. Estimation of Temporal and Spatial Variation of Sound Speed in Ocean From GNSS-A Measurements for Observation Using Moored Buoy[J]. Progress in Earth and Planetary Science, 2020, 7:21.
|
[2] |
Sakic P, Ballu V, Crawford W, et al. Acoustic Ray Tracing Comparisons in the Context of Geodetic Precise off-shore Positioning Experiment[J]. Marine Geodesy, 2018, 41(4):315-320.
|
[3] |
Yang Yuanxi, Xu Tianhe, Xue Shuqiang. Progresses and Prospects in Developing Marine Geodetic Datum and Marine Navigation of China[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(1):1-8. (杨元喜,徐天河,薛树强.我国海洋大地测量基准与海洋导航技术研究进展与展望[J].测绘学报, 2017,46(1):1-8.)
|
[4] |
Yang Yuanxi, Qin Xianping. Resilient Observation Models for Seafloor Geodetic Positioning[J]. Journal of Geodesy, 2021, 95:79.
|
[5] |
Lu Xiuping, Bian Shaofeng, Huang Motao, et al. An Improved Method for Calculating Average Sound Speed in Constant Gradient Sound Ray Tracing Technology[J]. Geomatics and Information Science of Wuhan University, 2012, 37(5):590-593. (陆秀平,边少锋,黄谟涛,等. 常梯度声线跟踪中平均声速的改进算法[J]. 武汉大学学报(信息科学版), 2012, 37(5):590-593.)
|
[6] |
Zhao Jianhu, Zhang Hongmei, Wu Meng. A Sound Ray Tracking Algorithm Based on Template-Interpolation of Constant-Gradient Sound Velocity[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1):71-78. (赵建虎,张红梅,吴猛. 一种基于常梯度模板插值的声线跟踪算法[J]. 武汉大学学报(信息科学版), 2021, 46(1):71-78)
|
[7] |
Zhang Jucheng, Zheng Cuie, Sun Dajun. A Self-adapting Division Method for RayTracing Positioning[J]. Journal of Harbin Engineering University, 2013, 34(12):1497-1501(张居成,郑翠娥,孙大军. 用于声线跟踪定位的自适应分层方法[J].哈尔滨工程大学学报, 2013, 34(12):1497-1501)
|
[8] |
Zhang Zhiwei, Bao Jingyang, Jin Shan. A Self-adapting Division Method for RayTracing of Multi-beam Echo sounding[J]. Hydrograhic Surveying and Charting, 2018, 38(1):23-42(张志伟,暴景阳,金山. 一种多波束测深声线跟踪自适应分层方法[J].海洋测绘, 2018, 38(1):23-42)
|
[9] |
Li Shengxue, Wang Zhenjie, Nie Zhixi, et al. A Self-adapting Division Ray-Tracing Method in the Long Baseline Acoustic Positioning[J]. Marine Science Bulletin, 2015, 34(5):491-498(李圣雪,王振杰,聂志喜, 等. 一种适用于深海长基线定位的自适应分层声线跟踪法[J]. 海洋通报, 2015, 34(5):491-498)
|
[10] |
Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Differential Positioning Algorithm for Deep-sea Control Points on the Constraint of Depth Difference and Horizontal Distance Constraint[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1190-1196. (孙文舟,殷晓冬,曾安敏,等. 附加深度差和水平距离约束的深海控制点差分定位算法[J].测绘学报, 2019, 48(9):1190-1196.)
|
[11] |
Yamada T, Ando M, Tadokoro K, et al. Error Evaluation in Acoustic Positioning of a Single Transponder for Seafloor Crustal Deformation Measurements[J]. Earth, planets and Space, 2002, 54(9):871-881.
|
[12] |
Sun Wenzhou, Yin Xiaodong, Bao Jingyang, et al. Semi-parametric Adjustment Model Methods for Positioning of Seafloor Control Point[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(1):117-123. (孙文舟,殷晓冬,暴景阳,等. 海底控制点定位的半参数平差模型法[J].测绘学报, 2019, 48(1):117-123.)
|
[13] |
Sun Wenzhou, Yin Xiaodong, Zeng Anmin. The Relationship Between Propagation Time and Sound Velocity Profile for Positioning Seafloor Reference Points[J]. Marine Geodesy, 2019, 42(2):186-200.
|
[14] |
Urick R J. Principles of Underwater Sound for Engineers[M]. New York:McGrawHill, 1983.
|
[15] |
Chadwell C D, Sweeney A D. Acoustic Ray-trace Equations for Seafloor Geodesy[J]. Marine Geodesy, 2010, 33(2-3):164-186.
|
[16] |
Lǚ Huaqing. Fundamentals of marine physics[M]. Beijing:Navy Press,2012. (吕华庆. 物理海洋学基础[M]. 北京:海军出版社, 2012.)
|
[17] |
Liu Bosheng, Lei Jiayu. Principles of Underwater Acoustics[M]. Harbin:Harbin Engineering University Press, 2010.(刘伯胜, 雷家煜. 水声学原理[M]. 哈尔滨:哈尔滨工程大学出版社, 2010.)
|
[18] |
Sun Wenzhou. Study on Coordinate Determination and Key Parameters Determination of Seafloor Geodetic Control Network[D]. Dalian:Dalian Naval Academy, 2019. (孙文舟. 海底大地控制网坐标测定及关键参数确定方法的研究[D]. 大连:大连舰艇学院, 2019.)
|
[19] |
Zhang Zhaoying. The Status and Development of CTD Measurement Technology[J]. Ocean Technology, 2003, 22(4):105-110. (张兆英. CTD测量技术的现状与发展[J].海洋技术, 2003, 22(4):105-110.)
|
[20] |
Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Differential Positioning Algorithm for Deep-sea Control Points on Constraint of Depth Difference and Horizontal Distance Constraint[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(9):1190-1196. (孙文舟,殷晓冬,曾安敏. 附加深度差和水平距离约束的深海控制点差分定位算法[J]测绘学报, 2019, 48(9):1190-1196.)
|
[21] |
Sun Wenzhou, Yin Xiaodong, Zeng Anmin, et al. Calculating the Starting Incidence Angle by Iterative Method for Positioning Seafloor Control Points[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10):1588-1593. (孙文舟, 殷晓冬,曾安敏,等. 海底控制点定位初始入射角迭代计算方法的比较研究[J]. 武汉大学学报(信息科学版), 2020, 45(10):1588-1593.)
|
[1] | HUANG Li, GONG Zhipeng, LIU Fanfan, CHENG Qimin. Bus Passenger Flow Detection Model Based on Image Cross-Scale Feature Fusion and Data Augmentation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 700-708. DOI: 10.13203/j.whugis20220690 |
[2] | HOU Zhaoyang, LÜ Kaiyun, GONG Xunqiang, ZHI Junhao, WANG Nan. Remote Sensing Image Fusion Based on Low-Level Visual Features and PAPCNN in NSST Domain[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 960-969. DOI: 10.13203/j.whugis20220168 |
[3] | GUO Chunxi, GUO Xinwei, NIE Jianliang, WANG Bin, LIU Xiaoyun, WANG Haitao. Establishment of Vertical Movement Model of Chinese Mainland by Fusion Result of Leveling and GNSS[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 579-586. DOI: 10.13203/j.whugis20200167 |
[4] | TU Chao-hu, YI Yao-hua, WANG Kai-li, PENG Ji-bing, YIN Ai-guo. Adaptive Multi-level Feature Fusion for Scene Ancient Chinese Text Recognition[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230176 |
[5] | LIN Dong, QIN Zhiyuan, TONG Xiaochong, QIU Chunping, LI He. Objected-Based Structural Feature Extraction Method Using Spectral and Morphological Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(5): 704-710. DOI: 10.13203/j.whugis20150627 |
[6] | LIN Xueyuan. Two-Level Distributed Fusion Algorithm for Multisensor Integrated Navigation System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 274-277. |
[7] | XU Kai, QIN Kun, DU Yi. Classification for Remote Sensing Data with Decision Level Fusion[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 826-829. |
[8] | ZHAO Yindi, ZHANG Liangpei, LI Pingxiang. A Texture Classification Algorithm Based on Feature Fusion[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 278-281. |
[9] | JIA Yonghong, LI Deren. An Approach of Classification Based on Pixel Level and Decision Level Fusion of Multi-source Images in Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2001, 26(5): 430-434. |
[10] | Li Linhui, Wang Yu, Liu Yueyan, Li Lei, Huang Jincheng, Zhou Yi, Cao Songlin. A Fast Fusion Model for Multi-Source Heterogeneous Data Of Real Estate Based on Feature Similarity[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20220742 |