Citation: | WEI Zhiwei, LIU Yuangang, XU Wenjia, WANG Yang. Central Time-Space Map Construction Using the Snake Model[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2105-2112. DOI: 10.13203/j.whugis20220553 |
[1] |
蒋海兵, 徐建刚, 祁毅. 京沪高铁对区域中心城市陆路可达性影响[J]. 地理学报, 2010, 65(10): 1287-1298 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201010015.htm
Jiang Haibing, Xu Jiangang, Qi Yi. The Influence of Beijing-Shanghai High-Speed Railways on Land Accessibility of Regional Center Cities[J]. Acta Geographica Sinica, 2010, 65(10): 1287-1298 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201010015.htm
|
[2] |
王丽娜, 李响, 江南, 等. 中心型时间地图的构建方法与实现[J]. 测绘学报, 2018, 47(1): 123-132 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201801016.htm
Wang Lina, Li Xiang, Jiang Nan, et al. A New Method of Constructing a Central Time-Space Map[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 123-132 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201801016.htm
|
[3] |
王丽娜, 江南, 李响, 等. Cartogram表示方法研究综述[J]. 计算机辅助设计与图形学学报, 2017, 29(3): 393-405 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201703001.htm
Wang Lina, Jiang Nan, Li Xiang, et al. A Survey of Cartogram[J]. Journal of Computer⁃Aided Design & Computer Graphics, 2017, 29(3): 393-405 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201703001.htm
|
[4] |
Nusrat S, Kobourov S. The State of the Art in Cartograms[J]. Computer Graphics Forum, 2016, 35(3): 619-642 doi: 10.1111/cgf.12932
|
[5] |
Hong S, Kim Y S, Yoon J C, et al. Traffigram: Distortion for Clarification via Isochronal Cartography[C]//The SIGCHI Conference on Human Factors in Computing Systems, New York, USA, 2014
|
[6] |
Bies S, van Kreveld M. Time-Space Maps from Triangulations[M]//Heidelberg: Springer, 2013
|
[7] |
Ullah R, Kraak M J. An Alternative Method to Constructing Time Cartograms for the Visual Representation of Scheduled Movement Data[J]. Journal of Maps, 2015, 11(4): 674-687 doi: 10.1080/17445647.2014.935502
|
[8] |
王丽娜. Cartogram自动构建方法与应用研究[D]. 郑州: 信息工程大学, 2018
Wang Lina. Research on Automatic Construction Method and Application of Cartogram[D]. Zhengzhou: Information Engineering University, 2018
|
[9] |
Burghardt D, Meier S. Cartographic Displacement Using the Snake Concept[J]. Semantic Modeling for the Acquisition of Topographic Information from Images and Maps, Basel, Birkhäuser Verlag, 1997, 7: 59-71
|
[10] |
刘远刚. 基于能量最小化原理的地图要素移位算法研究与改进[D]. 武汉: 武汉大学, 2015
Liu Yuangang. Research and Improvement of Cartographic Displacement Algorithms Based on Energy Minimization Principles[D]. Wuhan: Wuhan University, 2015
|
[11] |
Liu Y G, Guo Q S, Sun Y G, et al. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm[J]. PLoS One, 2014, 9(12): e113953 doi: 10.1371/journal.pone.0113953
|
[12] |
郭庆胜, 周林, 王琳, 等. 顾及制图规则的道路Snake移位模型改进[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1629-1634 doi: 10.13203/j.whugis20160357
Guo Qingsheng, Zhou Lin, Wang Lin, et al. Improvement of Snake Displacement Model for Roads Considering Cartographic Rules[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1629-1634 doi: 10.13203/j.whugis20160357
|
[13] |
Wei Z W, Su D J, Xu W J, et al. Circular Cartograms via the Elastic Beam Algorithm Originated from Cartographic Generalization[J]. arXiv, 2022, DOI: 2204.12645
|
[14] |
艾廷华. Delaunay三角网支持下的空间场表达[J]. 测绘学报, 2006, 35(1): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200601013.htm
Ai Tinghua. A Spatial Field Representation Model Based on Delaunay Triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(1): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200601013.htm
|
[15] |
郭庆胜, 魏智威, 王勇, 等. 特征分类与邻近图相结合的建筑物群空间分布特征提取方法[J]. 测绘学报, 2017, 46(5): 631-638 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705015.htm
Guo Qingsheng, Wei Zhiwei, Wang Yong, et al. The Method of Extracting Spatial Distribution Characteristics of Buildings Combined with Feature Classification and Proximity Graph[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 631-638 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705015.htm
|
[16] |
Wei Z W, Guo Q S, Wang L, et al. On the Spatial Distribution of Buildings for Map Generalization[J]. Cartography and Geographic Information Science, 2018, 45(6): 539-555
|
[17] |
Bader M. Energy Minimization Methods for Feature Displacement in Map Generalization[D]. Zurich : University of Zurich, 2001
|
[18] |
Regnauld N. Contextual Building Typification in Automated Map Generalization[J]. Algorithmica, 2001, 30(2): 312-333
|
[19] |
魏智威, 郭庆胜, 程璐, 等. 建筑物图形形状相似性计算的序列分析法[J]. 测绘学报, 2021, 50(12): 1683-1693 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112005.htm
Wei Zhiwei, Guo Qingsheng, Cheng Lu, et al. Shape Similarity Measurement Based on DNA Alignment for Buildings with Multiple Orthogonal Features[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1683-1693 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112005.htm
|
[20] |
刘鹏程, 艾廷华, 胡晋山, 等. 基于原型模板形状匹配的建筑多边形化简[J]. 武汉大学学报·信息科学版, 2010, 35(11): 1369-1372 http://ch.whu.edu.cn/article/id/1117
Liu Pengcheng, Ai Tinghua, Hu Jinshan, et al. Building-Polygon Simplification Based on Shape Matching of Prototype Template[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1369-1372 http://ch.whu.edu.cn/article/id/1117
|
[1] | JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316 |
[2] | LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127 |
[3] | WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491 |
[4] | XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335 |
[5] | JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270 |
[6] | SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159 |
[7] | ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342 |
[8] | GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724. |
[9] | GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241. |
[10] | XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722. |