WEI Zhiwei, LIU Yuangang, XU Wenjia, WANG Yang. Central Time-Space Map Construction Using the Snake Model[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2105-2112. DOI: 10.13203/j.whugis20220553
Citation: WEI Zhiwei, LIU Yuangang, XU Wenjia, WANG Yang. Central Time-Space Map Construction Using the Snake Model[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2105-2112. DOI: 10.13203/j.whugis20220553

Central Time-Space Map Construction Using the Snake Model

Funds: 

The National Natural Science Foundation of China 41871378

More Information
  • Author Bio:

    WEI Zhiwei, PhD, assistant researcher, specializes in intelligent handling and visualization of geospatial data. E-mail: 2011301130108@whu.edu.cn

  • Received Date: September 04, 2022
  • Available Online: January 06, 2023
  • Published Date: December 04, 2022
  •   Objectives  The central time-space maps deform the map space to visualize the one-to-many time distance, which can intuitively reflect the distance changes due to the influence of a traffic system. The core of the central time-space map construction is to calculate the non-control points' locations based on the control points' displacements. Displacement is a basic operation in cartographic generalization and many approaches have been developed.
      Methods  We model the central time-space map construction as a problem of displacement in cartographic generalization, use the relative neighborhood graph to express the proximity relations between the points, and the initial forces on the points are computed based on the control points' displacements.And the Snake model is applied iteratively based on the built graph to obtain the new locations of all points, post operations are also applied to avoid topology errors in the iterative process.
      Results and Conclusions  Compared to the existing approaches, the proposed method can reduce the topology errors and improve the shape similarity for the deformed boundaries, and can better avoid topology errors and maintain the local morphologies.
  • [1]
    蒋海兵, 徐建刚, 祁毅. 京沪高铁对区域中心城市陆路可达性影响[J]. 地理学报, 2010, 65(10): 1287-1298 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201010015.htm

    Jiang Haibing, Xu Jiangang, Qi Yi. The Influence of Beijing-Shanghai High-Speed Railways on Land Accessibility of Regional Center Cities[J]. Acta Geographica Sinica, 2010, 65(10): 1287-1298 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201010015.htm
    [2]
    王丽娜, 李响, 江南, 等. 中心型时间地图的构建方法与实现[J]. 测绘学报, 2018, 47(1): 123-132 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201801016.htm

    Wang Lina, Li Xiang, Jiang Nan, et al. A New Method of Constructing a Central Time-Space Map[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(1): 123-132 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201801016.htm
    [3]
    王丽娜, 江南, 李响, 等. Cartogram表示方法研究综述[J]. 计算机辅助设计与图形学学报, 2017, 29(3): 393-405 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201703001.htm

    Wang Lina, Jiang Nan, Li Xiang, et al. A Survey of Cartogram[J]. Journal of Computer⁃Aided Design & Computer Graphics, 2017, 29(3): 393-405 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJF201703001.htm
    [4]
    Nusrat S, Kobourov S. The State of the Art in Cartograms[J]. Computer Graphics Forum, 2016, 35(3): 619-642 doi: 10.1111/cgf.12932
    [5]
    Hong S, Kim Y S, Yoon J C, et al. Traffigram: Distortion for Clarification via Isochronal Cartography[C]//The SIGCHI Conference on Human Factors in Computing Systems, New York, USA, 2014
    [6]
    Bies S, van Kreveld M. Time-Space Maps from Triangulations[M]//Heidelberg: Springer, 2013
    [7]
    Ullah R, Kraak M J. An Alternative Method to Constructing Time Cartograms for the Visual Representation of Scheduled Movement Data[J]. Journal of Maps, 2015, 11(4): 674-687 doi: 10.1080/17445647.2014.935502
    [8]
    王丽娜. Cartogram自动构建方法与应用研究[D]. 郑州: 信息工程大学, 2018

    Wang Lina. Research on Automatic Construction Method and Application of Cartogram[D]. Zhengzhou: Information Engineering University, 2018
    [9]
    Burghardt D, Meier S. Cartographic Displacement Using the Snake Concept[J]. Semantic Modeling for the Acquisition of Topographic Information from Images and Maps, Basel, Birkhäuser Verlag, 1997, 7: 59-71
    [10]
    刘远刚. 基于能量最小化原理的地图要素移位算法研究与改进[D]. 武汉: 武汉大学, 2015

    Liu Yuangang. Research and Improvement of Cartographic Displacement Algorithms Based on Energy Minimization Principles[D]. Wuhan: Wuhan University, 2015
    [11]
    Liu Y G, Guo Q S, Sun Y G, et al. A Combined Approach to Cartographic Displacement for Buildings Based on Skeleton and Improved Elastic Beam Algorithm[J]. PLoS One, 2014, 9(12): e113953 doi: 10.1371/journal.pone.0113953
    [12]
    郭庆胜, 周林, 王琳, 等. 顾及制图规则的道路Snake移位模型改进[J]. 武汉大学学报·信息科学版, 2017, 42(11): 1629-1634 doi: 10.13203/j.whugis20160357

    Guo Qingsheng, Zhou Lin, Wang Lin, et al. Improvement of Snake Displacement Model for Roads Considering Cartographic Rules[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1629-1634 doi: 10.13203/j.whugis20160357
    [13]
    Wei Z W, Su D J, Xu W J, et al. Circular Cartograms via the Elastic Beam Algorithm Originated from Cartographic Generalization[J]. arXiv, 2022, DOI: 2204.12645
    [14]
    艾廷华. Delaunay三角网支持下的空间场表达[J]. 测绘学报, 2006, 35(1): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200601013.htm

    Ai Tinghua. A Spatial Field Representation Model Based on Delaunay Triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(1): 71-76 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200601013.htm
    [15]
    郭庆胜, 魏智威, 王勇, 等. 特征分类与邻近图相结合的建筑物群空间分布特征提取方法[J]. 测绘学报, 2017, 46(5): 631-638 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705015.htm

    Guo Qingsheng, Wei Zhiwei, Wang Yong, et al. The Method of Extracting Spatial Distribution Characteristics of Buildings Combined with Feature Classification and Proximity Graph[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(5): 631-638 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201705015.htm
    [16]
    Wei Z W, Guo Q S, Wang L, et al. On the Spatial Distribution of Buildings for Map Generalization[J]. Cartography and Geographic Information Science, 2018, 45(6): 539-555
    [17]
    Bader M. Energy Minimization Methods for Feature Displacement in Map Generalization[D]. Zurich : University of Zurich, 2001
    [18]
    Regnauld N. Contextual Building Typification in Automated Map Generalization[J]. Algorithmica, 2001, 30(2): 312-333
    [19]
    魏智威, 郭庆胜, 程璐, 等. 建筑物图形形状相似性计算的序列分析法[J]. 测绘学报, 2021, 50(12): 1683-1693 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112005.htm

    Wei Zhiwei, Guo Qingsheng, Cheng Lu, et al. Shape Similarity Measurement Based on DNA Alignment for Buildings with Multiple Orthogonal Features[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50(12): 1683-1693 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202112005.htm
    [20]
    刘鹏程, 艾廷华, 胡晋山, 等. 基于原型模板形状匹配的建筑多边形化简[J]. 武汉大学学报·信息科学版, 2010, 35(11): 1369-1372 http://ch.whu.edu.cn/article/id/1117

    Liu Pengcheng, Ai Tinghua, Hu Jinshan, et al. Building-Polygon Simplification Based on Shape Matching of Prototype Template[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1369-1372 http://ch.whu.edu.cn/article/id/1117
  • Related Articles

    [1]JI Kunpu, SHEN Yunzhong, CHEN Qiujie. An Adaptive Regularized Filtering Approach for Processing GRACE Time-Variable Gravity Field Models[J]. Geomatics and Information Science of Wuhan University, 2024, 49(11): 2101-2112. DOI: 10.13203/j.whugis20240316
    [2]LIU Meng, WANG Zheng-tao. Downward Continuation Iterative Regularization Solution Based on Quasi Optimal Regularization Factor Set[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230127
    [3]WU Fengfeng, HUANG Haijun, REN Qingyang, FAN Wenyou, CHEN Jie, PAN Xiong. Analysis of Downward Continuation Model of Airborne Gravity Based on Comprehensive Semi-parametric Kernel Estimation and Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1563-1569. DOI: 10.13203/j.whugis20180491
    [4]XU Xinqiang, ZHAO Jun. A Multi-Parameter Regularization Method in Downward Continuation for Airborne Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(7): 956-963, 973. DOI: 10.13203/j.whugis20180335
    [5]JI Kunpu, SHEN Yunzhong. Unbiased Estimation of Unit Weight Variance by TSVD Regularization[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 626-632. DOI: 10.13203/j.whugis20180270
    [6]SUN Wen, WU Xiaoping, WANG Qingbin, LIU Xiaogang, ZHU Zhida. Normalized Collocation Based on Variance Component Estimate and Its Application in Multi-source Gravity Data Fusion[J]. Geomatics and Information Science of Wuhan University, 2016, 41(8): 1087-1092. DOI: 10.13203/j.whugis20140159
    [7]ZENG Xiaoniu, LI Xihai, LIU Zhigang, YANG Xiaojun, LIU Daizhi. Regularization Method for Reduction to the Pole and Components Transformation of Magnetic Anomaly at Low Latitudes[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 388-394. DOI: 10.13203/j.whugis20140342
    [8]GU Yongwei, GUI Qingming, HAN Songhui, WANG Jinhui. Regularization by Grouping Correction in Downward Continuation of Airborne Gravity[J]. Geomatics and Information Science of Wuhan University, 2013, 38(6): 720-724.
    [9]GU Yongwei, GUI Qingming, BIAN Shaofeng, GUO Jianfeng. Comparison Between Tikhonov Regularization and Truncated SVD in Geophysics[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 238-241.
    [10]XU Tianhe, YANG Yuanxi. Robust Tikhonov Regularization Method and Its Applications[J]. Geomatics and Information Science of Wuhan University, 2003, 28(6): 719-722.
  • Cited by

    Periodical cited type(5)

    1. 穆庆禄,王长青,闫易浩,钟敏,冯伟,梁磊,朱紫彤. 不同指向模式下星载冷原子梯度仪对重力场解算精度的影响. 地球物理学报. 2024(07): 2528-2545 .
    2. 刘滔,钟波,李贤炮,谭江涛. GOCE卫星重力梯度数据反演重力场的滤波器设计与比较分析. 武汉大学学报(信息科学版). 2023(05): 694-701 .
    3. 朱广彬,常晓涛,瞿庆亮,周苗. 利用卫星引力梯度确定地球重力场的张量不变方法研究. 武汉大学学报(信息科学版). 2022(03): 334-340 .
    4. 罗志才,钟波,周浩,吴云龙. 利用卫星重力测量确定地球重力场模型的进展. 武汉大学学报(信息科学版). 2022(10): 1713-1727 .
    5. 陈鑑华,张兴福,陈秋杰,梁建青,沈云中. 融合GOCE和GRACE卫星数据的无约束重力场模型Tongji-GOGR2019S. 地球物理学报. 2020(09): 3251-3262 .

    Other cited types(1)

Catalog

    Article views (653) PDF downloads (84) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return