YANG Nai, PANG Xujing, XI Daping, WU Guojia. Evaluation of Font Size Strategy of Arithmetic Progression for Tag Weights on Intrinsic Tag Maps[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2134-2142. DOI: 10.13203/j.whugis20220433
Citation: YANG Nai, PANG Xujing, XI Daping, WU Guojia. Evaluation of Font Size Strategy of Arithmetic Progression for Tag Weights on Intrinsic Tag Maps[J]. Geomatics and Information Science of Wuhan University, 2022, 47(12): 2134-2142. DOI: 10.13203/j.whugis20220433

Evaluation of Font Size Strategy of Arithmetic Progression for Tag Weights on Intrinsic Tag Maps

Funds: 

The National Natural Science Foundation of China 42171438

More Information
  • Author Bio:

    YANG Nai, PhD, associate professor, specializes in map visualization, spatiotemporal big data visualization analysis and application. E-mail: yangnai@cug.edu.cn

  • Corresponding author:

    XI Daping, PhD, associate professor. E-mail: 46619441@qq.com

  • Received Date: July 18, 2022
  • Available Online: January 06, 2023
  • Published Date: December 04, 2022
  •   Objectives  With the increasing application of tag maps, there is an urgent need for research on the evaluation of tag weight expression strategies. Tag weight differences in tag maps are usually reflected by different font sizes. One of the common strategies is evaluated, where the sequence of font sizes is an arithmetic progression.
      Methods  The five countries with different, representative shapes are selected as study cases. Five corresponding tag maps are produced by randomly generated tags in alphabetical order from left to right and top to bottom. On this basis, a controlled experiment is conducted. Two application scenarios of unpurposed free browsing and purposeful reading analysis are set, and tag selection, recognition/search, recalling, and subjective evaluation tasks are assigned. The subjects' eye movement data and some other derived data are collected and statistically analyzed by the Kruskal-Wallis test and MannWhitney U test methods.
      Results  The results show that: (1) Tags of different sizes do not show significant differences in terms of visual salience, visual attractiveness, weight recalling and search efficiency, reading efficiency, and cognitive load in recognition/search tasks. (2) Tags with font size at the upper level are easier to be recognized/searched and of higher interest to subjects than those with font size at the lower level, but it does not mean that tags with larger size are more likely to be recognized/searched and of higher interest to subjects. (3) The overall evaluation of tag maps using font size strategy of arithmetic progression is at a good level.
      Conclusions  The paper is helpful for map designers to further understand the characteristics of font size strategy. The font size is not a panacea in the tag weight expression of tag maps. In addition to font size, tag weight differences in tag maps can be shown by combining other visual attributes such as brightness, color, typeface, etc., or accompanying auxiliary charts according to the actual application. The interaction of the shape, area, the density of tags, and other visual attributes with the font size and some other font size strategies need to be studied for different users.
  • [1]
    杨乃, 吴国佳, 杨春成. 文本地图可视化综述[J]. 测绘地理信息, 2021, 46(1): 48-52 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202101011.htm

    Yang Nai, Wu Guojia, Yang Chuncheng. Overview of Text Map Visualization[J]. Journal of Geomatics, 2021, 46(1): 48-52 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202101011.htm
    [2]
    姚尧, 尹瀚玙, 李歆艺, 等. 基于多源地理数据精细尺度的武汉市人居环境新型冠状病毒肺炎疫情传播风险评估[J]. 生态学报, 2021, 41(19): 7493-7508 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202119001.htm

    Yao Yao, Yin Hanyu, Li Xinyi, et al. Fine-Scale Risk Assessment of COVID-19 in Wuhan Based on Multisource Geographical Data[J]. Acta Ecologica Sinica, 2021, 41(19): 7493-7508 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB202119001.htm
    [3]
    葛咏, 满旺, 任周鹏, 等. 地名制图应用研究: 以地名普查成果为例[J]. 测绘地理信息, 2021, 46(1): 21-27 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202101006.htm

    Ge Yong, Man Wang, Ren Zhoupeng, et al. Application Research on Geographical Names Cartography: A Case Study of General Survey Results of Geographical Names[J]. Journal of Geomatics, 2021, 46(1): 21-27 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202101006.htm
    [4]
    江文萍, 孙玉洁, 黄丽娜, 等. 民族人口分布专题信息表达的标签云布局方法[J]. 测绘科学, 2019, 44(4): 130-138 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201904023.htm

    Jiang Wenping, Sun Yujie, Huang Lina, et al. A Thematic Tag Cloud Layout Method Considering Multi-constraint Geographic Characteristics[J]. Science of Surveying and Mapping, 2019, 44(4): 130-138 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201904023.htm
    [5]
    黄丽娜, 魏媛, 王米琪, 等. 字符云在民族与民俗专题地图编制中的应用[J]. 地理空间信息, 2018, 16(9): 16-19 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201809007.htm

    Huang Lina, Wei Yuan, Wang Miqi, et al. Application of Tag Cloud in Thematic Map Production of Ethnic Nationalism and Folk-Custom[J]. Geospatial Information, 2018, 16(9): 16-19 https://www.cnki.com.cn/Article/CJFDTOTAL-DXKJ201809007.htm
    [6]
    Yang N, MacEachren A M, Domanico E. Utility and Usability of Intrinsic Tag Maps[J]. Cartography and Geographic Information Science, 2020, 47(4): 291-304
    [7]
    Yang N, MacEachren A M, Yang L P. TIN-Based Tag Map Layout[J]. The Cartographic Journal, 2019, 56(2): 101-116
    [8]
    Yang L, Li J, Lu W H, et al. The Influence of Font Scale on Semantic Expression of Word Cloud[J]. Journal of Visualization, 2020, 23(6): 981-998
    [9]
    Jaffe A, Naaman M, Tassa T, et al. Generating Summaries and Visualization for Large Collections of Geo-Referenced Photographs[C]//The 8th ACM International Workshop on Multimedia Information Retrieval, New York, USA, 2006
    [10]
    de Chiara D, del Fatto V, Sebillo M. Visualizing Geographical Information Through Tag Clouds[M]//Heidelberg: Physica, 2012
    [11]
    de Chiara D, del Fatto V, Sebillo M, et al. Tag@Map: A Web-Based Application for Visually Analyzing Geographic Information through Georeferenced Tag Clouds[M]//Heidelberg: Springer, 2012
    [12]
    Nguyen D, Schumann H. Taggram: Exploring Geo-Data on Maps Through a Tag Cloud-Based Visualization[C]//The 14th International Conference on Information Visualisation, Los Alamitos, CA, USA, 2010
    [13]
    Thom D, Bosch H, Koch S, et al. Spatiotemporal Anomaly Detection Through Visual Analysis of Geolocated Twitter Messages[C]//IEEE Pacific Visualization Symposium, Songdo, Republic of Korea, 2012
    [14]
    Reckziegel M, Cheema M F, Scheuermann G, et al. Predominance Tag Maps[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(6): 1893-1904
    [15]
    Rivadeneira A W, Gruen D M, Muller M J, et al. Getting Our Head in the Clouds: Toward Evaluation Studies of Tagclouds[C]//The SIGCHI Conference on Human Factors in Computing Systems, New York, NY, USA, 2007
    [16]
    Halvey M, Keane M. An Assessment of Tag Presentation Techniques[C]//The 16th International Conference on World Wide Web, New York, NY, USA, 2007
    [17]
    Bateman S, Gutwin C, Nacenta M. Seeing Things in the Clouds: The Effect of Visual Features on Tag Cloud Selections[C]//The 9th ACM Conference on Hypertext and Hypermedia, New York, USA, 2008
    [18]
    Lohmann S, Ziegler J, Tetzlaff L. Comparison of Tag Cloud Layouts: Task-Related Performance and Visual Exploration[M]//Heidelberg: Springer, 2009
    [19]
    Ma X Y, Ma H. Comparative Study of Graphic-Based Tag Clouds: Theory and Experimental Evaluation for Information Search[J]. Online Information Review, 2020, 44(5): 1135-1160
    [20]
    Deutsch S, Schrammel J, Tscheligi M. Comparing Different Layouts of Tag Clouds: Findings on Visual Perception[M]//Heidelberg: Springer, 2011
    [21]
    Felix C, Franconeri S, Bertini E. Taking Word Clouds Apart: An Empirical Investigation of the Design Space for Keyword Summaries[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(1): 657-666
    [22]
    Alexander E C, Chang C C, Shimabukuro M, et al. Perceptual Biases in Font Size as a Data Encoding[J]. IEEE Transactions on Visualization and Computer Graphics, 2018, 24(8): 2397-2410
    [23]
    董卫华, 廖华, 詹智成, 等. 2008年以来地图学眼动与视觉认知研究新进展[J]. 地理学报, 2019, 74(3): 599-614 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903016.htm

    Dong Weihua, Liao Hua, Zhan Zhicheng, et al. New Research Progress of Eye Tracking-Based Map Cognition in Cartography Since 2008[J]. Acta Geographica Sinica, 2019, 74(3): 599-614 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201903016.htm
    [24]
    Torres Parejo Ú, Campaña J R, Vila M A, et al. A Survey of Tag Clouds as Tools for Information Retrieval and Content Representation[J]. Information Visualization, 2021, 20(1): 83-97
    [25]
    Hearst M A, Pedersen E, Patil L, et al. An Evaluation of Semantically Grouped Word Cloud Designs[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 26(9): 2748-2761
    [26]
    Fang H, Xin S W, Pang H S, et al. Evaluating the Effectiveness and Efficiency of Risk Communication for Maps Depicting the Hazard of COVID-19[J]. Transactions in GIS: TG, 2022, 26(3): 1158-1181
    [27]
    Rinaldi A M. Web Summarization and Browsing Through Semantic Tag Clouds[J]. International Journal of Intelligent Information Technologies, 2019, 15(3): 1-23
    [28]
    郭仁忠, 陈业滨, 应申, 等. 三元空间下的泛地图可视化维度[J]. 武汉大学学报·信息科学版, 2018, 43(11): 1603-1610 doi: 10.13203/j.whugis20180373

    Guo Renzhong, Chen Yebin, Ying Shen, et al. Geographic Visualization of Pan-Map with the Context of Ternary Spaces[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1603-1610 doi: 10.13203/j.whugis20180373
    [29]
    王家耀. 关于地理信息系统未来发展的思考[J]. 武汉大学学报·信息科学版, 2022, 47(10): 1535-1545 doi: 10.13203/j.whugis20210679

    Wang Jiayao. Thoughts on the Future Development of Geographic Information System[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1535-1545 doi: 10.13203/j.whugis20210679
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views (513) PDF downloads (76) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return