LIU Yang, LI Hanghao, XIONG Luyun, WEN Yangmao, YANG Jiuyuan. Extracting Coseismic Three-Dimensional Deformation Field of Earthquake by Integrating Earthquake Dislocation Model and ESISTEM Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 349-358. DOI: 10.13203/j.whugis20220394
Citation: LIU Yang, LI Hanghao, XIONG Luyun, WEN Yangmao, YANG Jiuyuan. Extracting Coseismic Three-Dimensional Deformation Field of Earthquake by Integrating Earthquake Dislocation Model and ESISTEM Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 349-358. DOI: 10.13203/j.whugis20220394

Extracting Coseismic Three-Dimensional Deformation Field of Earthquake by Integrating Earthquake Dislocation Model and ESISTEM Method

More Information
  • Received Date: August 18, 2022
  • Available Online: October 27, 2022
  • Published Date: March 04, 2023
  •   Objectives  High-precision coseismic three-dimensional (3D) deformation field is of great significance for investigating the earthquake deformation pattern and focal mechanism. For the 2021 Ms 6.4 Yangbi earthquake, the characteristics of coseismic deformation observation can be described as: (1) Only two directions of interferometric synthetic aperture radar (InSAR) line of sight observations from the ascending and descending tracks; (2) lack of azimuth observation; (3) some incoherent regions existed around the epicenter; (4) sparse and unevenly distributed GNSS observation. This observational fact makes it difficult to accurately extract its coseismic 3D deformation field. Therefore, a new method is investigated to solve this issue.
      Methods  The new method is designed and implemented by integrating earthquake dislocation model and extended simultaneous and integrated strain tensor estimation from geodetic and satellite deformation measurements (ESISTEM) method. Firstly, the InSAR deformation field of the 2021 Ms 6.4 Yangbi earthquake is obtained by using the ascending and descending Sentinel-1A/B images. Secondly, the north-south deformation component obtained from the forward modeling of earthquake dislocation model is used as a constraint. Finally, with the new method, the complete coseismic 3D deformation field and strain field of the earthquake are successfully extracted.
      Results  (1) The 3D coseismic deformation field indicates that the southwest side of the Yangbi earthquake fault mainly moves westward and northward, with maxima of 4.8 cm and 9.5 cm, respectively. The northeast side mainly moves eastward and southward, with maxima of 7.4 cm and 4.6 cm, respectively. The maxima of vertical uplift and subsidence are 3.6 cm and 3.4 cm, respectively. (2) The earthquake fault is dominated by the right-lateral strike-slip movement with a small amount of normal components.(3) The strain field indicates that the earthquake fault area experiences significant expansion, shear, and rotation.
      Conclusions  The new method can make use of the north-south deformation component obtained from the forward modeling of earthquake dislocation model to carry out reasonable constraint, and take into account the spatial constraint between observation points. The reliability of the method is verified by the case study of the 2021 Ms 6.4 Yangbi earthquake. The method has reference value for expanding the method of extracting 3D deformation field.
  • [1]
    Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433): 138-142. doi: 10.1038/364138a0
    [2]
    单新建, 屈春燕, 宋小刚, 等. 汶川Ms 8.0级地震InSAR同震形变场观测与研究[J]. 地球物理学报, 2009, 52(2): 496-504.

    Shan Xinjian, Qu Chunyan, Song Xiaogang, et al. Coseismic Surface Deformation Caused by the Wenchuan Ms 8.0 Earthquake from InSAR Data Analysis[J]. Chinese Journal of Geophysics, 2009, 52(2): 496-504.
    [3]
    Zha X, Dai Z, Ge L, et al. Fault Geometry and Slip Distribution of the 2010 Yushu Earthquakes Inferred from InSAR Measurement[J]. Bulletin of the Seismological Society of America, 2011, 101(4): 1951-1958. doi: 10.1785/0120100192
    [4]
    Xu W B. Finite-Fault Slip Model of the 2016 Mw 7.5 Chiloe Earthquake, Southern Chile, Estimated from Sentinel-1 Data[J]. Geophysical Research Letters, 2017, 44: 4774-4780. doi: 10.1002/2017GL073560
    [5]
    刘洋, 许才军, 温扬茂. 门源Mw 5.9级地震形变InSAR观测及区域断裂带深部几何形态[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1035-1042. doi: 10.13203/j.whugis20190069

    Liu Yang, Xu Caijun, Wen Yangmao. InSAR Observation of Menyuan Mw 5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. doi: 10.13203/j.whugis20190069
    [6]
    李成龙, 张国宏, 单新建, 等. 2020年1月19日新疆伽师县Ms 6.4级地震InSAR同震形变场与断层滑动分布反演[J]. 地球物理学进展, 2021, 36(2): 481-488.

    Li Chenglong, Zhang Guohong, Shan Xinjian, et al. Coseismic Deformation and Slip Distribution of the Ms 6.4 Jiashi, Xinjiang Earthquake Revealed by Sentinel-1A SAR Imagery[J]. Progress in Geophysics, 2021, 36(2): 481-488.
    [7]
    Wright T J. Toward Mapping Surface Deformation in Three Dimensions Using InSAR[J]. Geophysical Research Letters, 2004, 31: L01607.
    [8]
    Gray L. Using Multiple RADARSAT InSAR Pairs to Estimate a Full Three-Dimensional Solution for Glacial Ice Movement[J]. Geophysical Research Letters, 2011, 38(5): 132-140.
    [9]
    王永哲, 李志伟, 朱建军, 等. 融合多平台DInSAR数据解算拉奎拉地震三维同震形变场[J]. 武汉大学学报(信息科学版), 2012, 37(7): 859-863. http://ch.whu.edu.cn/article/id/270

    Wang Yongzhe, Li Zhiwei, Zhu Jianjun, et al. Coseismic Three-Dimensional Deformation of L'Aquila Earthquake Derived from Multi-platform DInSAR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 859-863. http://ch.whu.edu.cn/article/id/270
    [10]
    Fialko Y, Simons M, Agnew D. The Complete(3D) Surface Displacement Field in the Epicentral Area of the 1999 Mw 7.1 Hector Mine Earthquake, California, from Space Geodetic Observations[J]. Geophysical Research Letters, 2001, 28(16): 3063-3066. doi: 10.1029/2001GL013174
    [11]
    Fialko Y, Sandwell D, Simons M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435(7040): 295-299. doi: 10.1038/nature03425
    [12]
    Jung H S, Yun S H, Jo M J. An Improvement of Multiple-Aperture SAR Interferometry Performance in the Presence of Complex and Large Line-of-Sight Deformation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4): 1743-1752. doi: 10.1109/JSTARS.2015.2399249
    [13]
    Gudmundsson S, Sigmundsson F, Carstensen J M. Three-Dimensional Surface Motion Maps Estimated from Combined Interferometric Synthetic Aperture Radar and GPS Data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ETG13-1.
    [14]
    Samsonov S, Tiampo K, Rundle J, et al. Application of DInSAR-GPS Optimization for Derivation of Fine-Scale Surface Motion Maps of Southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 512-521. doi: 10.1109/TGRS.2006.887166
    [15]
    班保松, 伍吉仓, 陈永奇, 等. 联合GPS和InSAR观测结果计算汶川地震三维地表形变[J]. 大地测量与地球动力学, 2010, 30(4): 25-28.

    Ban Baosong, Wu Jicang, Chen Yongqi, et al. Calculation of Three-Dimensional Terrain Deformation of Wenchuan Earthquake with GPS and InSAR Data[J]. Journal of Geodesy and Geodynamics, 2010, 30(4): 25-28.
    [16]
    胡俊, 李志伟, 朱建军, 等. 基于BFGS法融合InSAR和GPS技术监测地表三维形变[J]. 地球物理学报, 2013, 56(1): 117-126.

    Hu Jun, Li Zhiwei, Zhu Jianjun, et al. Measuring Three-Dimensional Surface Displacements from Combined InSAR and GPS Data Based on BFGS Method[J]. Chinese Journal of Geophysics, 2013, 56(1): 117-126.
    [17]
    Guglielmino F, Nunnari G, Puglisi G, et al. Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1815-1826. doi: 10.1109/TGRS.2010.2103078
    [18]
    Luo H P, Chen T. Three-Dimensional Surface Displacement Field Associated with the 25 April 2015 Gorkha, Nepal, Earthquake: Solution from Integrated InSAR and GPS Measurements with an Extended SISTEM Approach[J]. Remote Sensing, 2016, 8(7): 559. doi: 10.3390/rs8070559
    [19]
    袁霜, 何平, 温扬茂, 等. 综合InSAR和应变张量估计2016年Mw 7.0熊本地震同震三维形变场[J]. 地球物理学报, 2020, 63(4): 1340-1356.

    Yuan Shuang, He Ping, Wen Yangmao, et al. Integrated InSAR and Strain Tensor to Estimate Three-Dimensional Coseismic Displacements Associated with the 2016 Mw 7.0 Kumamoto Earthquake[J]. Chinese Journal of Geophysics, 2020, 63(4): 1340-1356.
    [20]
    Fujiwara S, Nishimura T, Murakami M, et al. 2.5-D Surface Deformation of M 6.1 Earthquake Near Mt Iwate Detected by SAR Interferometry[J]. Geophysical Research Letters, 2000, 27(14): 2049-2052. doi: 10.1029/1999GL011291
    [21]
    彭颖, 许才军, 刘洋. 联合地震位错模型和InSAR数据构建2017年九寨沟Mw 6.5地震同震三维形变场[J]. 武汉大学学报(信息科学版), 2022, 47(11): 1896-1905. doi: 10.13203/j.whugis20200289

    Peng Ying, Xu Caijun, Liu Yang. Deriving 3D Coseismic Deformation Field of 2017 Jiuzhaigou Earthquake with Elastic Dislocation Model and InSAR Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1896-1905. doi: 10.13203/j.whugis20200289
    [22]
    杨九元, 温扬茂, 许才军. 2021年5月21日云南漾濞Ms 6.4地震: 一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报, 2021, 64(9): 3101-3110.

    Yang Jiuyuan, Wen Yangmao, Xu Caijun. The 21 May 2021 Ms 6.4 Yangbi (Yunnan) Earthquake: A Shallow Strike-Slip Event Rupturing in a Blind Fault[J]. Chinese Journal of Geophysics, 2021, 64(9): 3101-3110.
    [23]
    徐晓雪, 季灵运, 朱良玉, 等. 漾濞Ms 6.4地震同震形变特征及发震构造探讨[J]. 地震地质, 2021, 43(4): 771-789.

    Xu Xiaoxue, Ji Lingyun, Zhu Liangyu, et al. The Co-seismic Deformation Characteristics and Seismogenic Structure of the Yangbi Ms 6.4 Earthquake[J]. Seismology and Geology, 2021, 43(4): 771-789.
    [24]
    朱俊文, 姚赟胜, 张波. 基于Sentinel-1A数据反演漾濞Ms 6.4地震的同震形变场及断层几何参数[J]. 地震工程学报, 2021, 43(4): 784-790.

    Zhu Junwen, Yao Yunsheng, Zhang Bo. Inversion of the Coseismic Deformation Field and Fault Geometric Parameters of the Yangbi Ms 6.4 Earthquake Based on Sentinel-1A Data[J]. China Earthquake Engineering Journal, 2021, 43(4): 784-790.
    [25]
    李大虎, 丁志峰, 吴萍萍, 等. 2021年5月21日云南漾濞Ms 6.4地震震区地壳结构特征与孕震背景[J]. 地球物理学报, 2021, 64(9): 3083-3100.

    Li Dahu, Ding Zhifeng, Wu Pingping, et al. The Characteristics of Crustal Structure and Seismogenic Background of Yangbi Ms 6.4 Earthquake on May 21, 2021 in Yunnan Province, China[J]. Chinese Journal of Geophysics, 2021, 64(9): 3083-3100.
    [26]
    常祖峰, 常昊, 李鉴林, 等. 维西—乔后断裂南段正断层活动特征[J]. 地震研究, 2016, 39(4): 579-586.

    Chang Zufeng, Chang Hao, Li Jianlin, et al. The Characteristic of Active Normal Faulting of the Southern Segment of Weixi-Qiaohou Fault[J]. Journal of Seismological Research, 2016, 39(4): 579-586.
    [27]
    何付明, 常祖峰. 滇西北龙蟠—乔后断裂带桃源段晚第四纪活动特征研究[J]. 地震工程学报, 2022, 44(3): 579-591.

    He Fuming, Chang Zufeng. Late Quaternary Activity Characteristics of the Taoyuan Section of Longpan-Qiaohou Fault Zone in Northwest Yunnan[J]. China Earthquake Engineering Journal, 2022, 44(3): 579-591.
    [28]
    王绍俊, 刘云华, 单新建, 等. 2021年云南漾濞Ms 6.4地震同震地表形变与断层滑动分布[J]. 地震地质, 2021, 43(3): 692-705.

    Wang Shaojun, Liu Yunhua, Shan Xinjian, et al. Coseismic Surface Deformation and Slip Models of the 2021 Ms 6.4 Yangbi(Yunnan, China) Earthquake[J]. Seismology and Geology, 2021, 43(3): 692-705.
    [29]
    常祖峰, 常昊, 臧阳, 等. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 2016, 22(3): 517-530.

    Chang Zufeng, Chang Hao, Zang Yang, et al. Recent Active Features of Weixi-Qiaohou Fault and Its Relationship with the Honghe Fault[J]. Journal of Geomechanics, 2016, 22(3): 517-530.
    [30]
    向宏发, 韩竹军, 虢顺民, 等. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质, 2004, 26(4): 597-610.

    Xiang Hongfa, Han Zhujun, Guo Shunmin, et al. Large-Scale Dextral Strike-Slip Movement and Asociated Tectonic Deformation Along the Red River Fault Zone[J]. Seismology and Geology, 2004, 26(4): 597-610.
    [31]
    于书媛, 骆佳骥, 杨源源, 等. InSAR数据约束的2021年5月21日云南漾濞Ms 6.4地震发震构造研究[J]. 地震工程学报, 2021, 43(4): 777-783.

    Yu Shuyuan, Luo Jiaji, Yang Yuanyuan, et al. Seismogenic Structure of the Yangbi, Yunnan Ms 6.4 Earthquake on May 21, 2021 Constrained by InSAR Data[J]. China Earthquake Engineering Journal, 2021, 43(4): 777-783.
    [32]
    张克亮, 甘卫军, 梁诗明, 等. 2021年5月21日Ms 6. 4漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J]. 地球物理学报, 2021, 64(7): 2253-2266.

    Zhang Keliang, Gan Weijun, Liang Shiming, et al. Coseismic Displacement and Slip Distribution of the 2021 May 21, Ms 6.4, Yangbi Earthquake Derived from GNSS Observations[J]. Chinese Journal of Geophysics, 2021, 64(7): 2253-2266.
    [33]
    Werner C, Wegmuller U, Strozzi T, et al. Gamma-SAR and Interferometric Processing Software[J]. Proceedings of the ESA Bulletin, 2000, 104: 15-23.
    [34]
    Goldstein R M, Zebker H A, Werner C L. Satellite Radar Interferometry: Two-Dimensional Phase Un- wrapping[J]. Radio Science, 1988, 23(4): 713-720.
    [35]
    Segall P. Earthquake and Volcano Deformation[M]. Princeton, NJ: Princeton University Press, 2010.
    [36]
    Shen Z K, Jackson D D, Ge B X. Crustal Deformation Across and Beyond the Los Angeles Basin from Geodetic Measurements[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B12): 27957-27980.
    [37]
    Pesci A, Teza G. Strain Rate Analysis over the Central Apennines from GPS Velocities: The Development of a New Free Software[J]. Cheminform, 2007, 37(11): 1231-1234.
    [38]
    Okada Y. Surface Deformation to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismo-logical Society of America, 1985, 75(4): 1135-1154.
    [39]
    Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
  • Related Articles

    [1]HU Zhuoming, YUAN Haijun, HE Xiufeng, ZHANG Zhetao, WANG Jin. Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 756-764. DOI: 10.13203/j.whugis20210454
    [2]LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714
    [3]LIU Lilong, CHEN Jun, HUANG Liangke, WU Pituan, QIN Xuyuan, CAI Chenghui. A Sophisticated Klobuchar Model Based on the Holt Exponential Smoothing Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 599-604. DOI: 10.13203/j.whugis20150751
    [4]ZHANG Qiang, ZHAO Qile, ZHANG Hongping, HU Zhigang, WU Yue. Evaluation on the Precision of Klobuchar Model forBeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 142-146. DOI: 10.13203/j.whugis20120716
    [5]RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028.
    [6]YANG Zhe, SONG Shuli, XUE Junchen, ZHU Wenyao. Accuracy Assessment of Klobuchar Model and NeQuick Model in China[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 704-708.
    [7]SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810.
    [8]SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781.
    [9]ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787.
    [10]LIU Zhimin, LIU Jingnan, LIU Hui. GPS Single-point Positioning Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 35-38.
  • Cited by

    Periodical cited type(34)

    1. 祝会忠,桂宇强,沈祎凡,王强. 基于GNSS-IR高度角偏差修正方法的研究与评估. 大地测量与地球动力学. 2025(02): 111-115 .
    2. 王笑蕾,杨泽艺,何秀凤,宋敏峰. GPS L2P(Y)信号在GNSS-IR技术中的特殊误差源及改正方法. 武汉大学学报(信息科学版). 2024(01): 122-130 .
    3. 郑南山,何佳星,丁锐,章恒一. 基于轨迹聚类的GNSS-IR多系统组合土壤湿度估计方法. 武汉大学学报(信息科学版). 2024(01): 37-46 .
    4. 刘善伟,梁承佳,万玮,张洁,马望. 一种考虑地形影响的GNSS-IR冻土冻融形变监测方法. 武汉大学学报(信息科学版). 2024(01): 77-89 .
    5. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    6. 黄令勇,李世忠,夏俊明,王海岩,孙越强,杨日新,杜起飞,黄志勇. 岸基条件下的星载GNSS-R干涉测高精度验证评估. 测绘学报. 2024(02): 239-251 .
    7. 王笑蕾,南阳,何秀凤,宋敏峰. 考虑潮波特性的GNSS-IR潮位反演方法. 测绘学报. 2024(03): 482-492 .
    8. 郭斐,陈惟杰,朱逸凡,张小红. 一种融合相位、振幅与频率的GNSS-IR土壤湿度反演方法. 武汉大学学报(信息科学版). 2024(05): 715-721 .
    9. 刘续,王式太,钟振华,殷敏,魏嘉林,姜新伟. 不同极化方式天线对GNSS-IR高度反演的影响. 导航定位学报. 2024(05): 139-148 .
    10. 余锐,刘洋,王清泉,高建伟,张郁,胡羽丰. 长时序多模多频GNSS-IR潮位反演综合比较分析. 武汉大学学报(信息科学版). 2024(12): 2210-2222 .
    11. 宋敏峰,何秀凤,王笑蕾. 顾及残余信噪比差异的地基GNSS反射干涉信号冰期探测法. 测绘学报. 2024(12): 2295-2304 .
    12. 王笑蕾,牛紫瑾,何秀凤,李润川. 沿海沉降变化GNSS定位及GNSS-IR组合监测. 测绘学报. 2023(01): 32-40 .
    13. Xiaolei WANG,Zijin NIU,Xiufeng HE,Runchuan LI. Monitoring of Coastal Subsidence Changes Based on GNSS Positioning and GNSS-IR. Journal of Geodesy and Geoinformation Science. 2023(02): 71-80 .
    14. 宋敏峰,何秀凤,王笑蕾,肖儒雅,贾东振,李伟强. 顾及地球曲率及椭球高的GNSS-R几何计算方法. 测绘学报. 2023(06): 884-894 .
    15. 桑文刚,王昭然,张兴国,靳奉祥. 岸基GPS-R水面高反演测站时空布局优化. 测绘通报. 2023(09): 40-45 .
    16. 聂士海,王龙,王梦柯,李鹏,梁磊,黄丹妮,刘斌. 结合机器学习的GNSS-IR多卫星双频组合土壤湿度反演. 测绘通报. 2023(10): 98-104 .
    17. 薛张芳,刘立龙,吴昊舰,张志,刘睿国. 利用CEEMDAN进行GNSS-MR雪深反演. 大地测量与地球动力学. 2022(01): 25-28 .
    18. 张一,周立. 基于NARX回归神经网络的岸基GNSS-IR有效波高反演模型分析. 测绘通报. 2022(02): 90-94 .
    19. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    20. 游高冲,郭杭,罗孝文,尹海博,王朝阳. 基于LS-SVM的多系统融合GNSS-MR潮位反演. 海洋学研究. 2022(01): 72-80 .
    21. 贾秀丽. 高斯过程回归辅助下的GPS干涉反射积雪深度估测. 测绘通报. 2022(07): 78-82 .
    22. 刘睿国,刘立龙,吴晗,薛张芳,吴昊舰,张志. 奇异谱分析在GNSS-MR海平面高度反演中的应用. 无线电工程. 2022(11): 1994-1999 .
    23. 王笑蕾,何秀凤,宋敏峰,陈殊,牛紫瑾. 多模多频GNSS-IR水位反演中的频间偏差分析及改正. 测绘学报. 2022(11): 2328-2338 .
    24. 邓攀,王泽民,安家春,张辛,于秋则,孙伟. 利用小波分解的GNSS-R雪厚反演改进算法. 武汉大学学报(信息科学版). 2021(06): 863-870 .
    25. Shuangcheng ZHANG,Meiling ZHOU,Yajie WANG,Ning LIU,Qi LIU,Jilun PENG. Ground-based GPS Used in the Snow Depth Survey of Greenland. Journal of Geodesy and Geoinformation Science. 2021(02): 47-55 .
    26. 张双成,王涛,王丽霞,张京江,刘宁,赵桂生. BDS/GPS多卫星解译土壤湿度变化研究. 测绘科学. 2021(07): 7-14 .
    27. 王笑蕾,何秀凤,陈殊,张勤,宋敏峰. 地基GNSS-IR风速反演原理及方法初探. 测绘学报. 2021(10): 1298-1307 .
    28. 吕铮,冯威,黄丁发. GNSS SNR信号反演大坝水位变化. 大地测量与地球动力学. 2020(02): 146-151 .
    29. 任超,潘亚龙,梁月吉,张志刚,黄仪邦. 基于GPS-IR的土壤湿度多星非线性回归估算模型. 遥感信息. 2020(02): 14-18 .
    30. 边少锋,周威,刘立龙,李厚朴,刘备. 小波变换与滑动窗口相结合的GNSS-IR雪深估测模型. 测绘学报. 2020(09): 1179-1188 .
    31. 王韩波,李红彦,张志刚,潘亚龙,李现广. 基于小波分析和LS-SVM的积雪厚度多星融合反演. 测绘科学. 2020(12): 95-101 .
    32. 李毅,任超,张志刚,梁月吉,潘亚龙. 基于多元线性回归的GPS-IR积雪深度反演研究. 遥感技术与应用. 2020(06): 1312-1319 .
    33. 张双成,武慧琳,张化疑,南阳,刘焱熊,周兴华,刘奇. 中国沿海GPS站用于潮波系数提取分析. 海洋测绘. 2019(03): 1-5+15 .
    34. 周威,黄良珂,刘立龙,陈军,李松青. 基于GLONASS-MR技术的雪深探测研究. 地球物理学进展. 2019(05): 1842-1848 .

    Other cited types(15)

Catalog

    Article views (735) PDF downloads (132) Cited by(49)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return