Citation: | LIU Yang, LI Hanghao, XIONG Luyun, WEN Yangmao, YANG Jiuyuan. Extracting Coseismic Three-Dimensional Deformation Field of Earthquake by Integrating Earthquake Dislocation Model and ESISTEM Method[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 349-358. DOI: 10.13203/j.whugis20220394 |
[1] |
Massonnet D, Rossi M, Carmona C, et al. The Displacement Field of the Landers Earthquake Mapped by Radar Interferometry[J]. Nature, 1993, 364(6433): 138-142. doi: 10.1038/364138a0
|
[2] |
单新建, 屈春燕, 宋小刚, 等. 汶川Ms 8.0级地震InSAR同震形变场观测与研究[J]. 地球物理学报, 2009, 52(2): 496-504.
Shan Xinjian, Qu Chunyan, Song Xiaogang, et al. Coseismic Surface Deformation Caused by the Wenchuan Ms 8.0 Earthquake from InSAR Data Analysis[J]. Chinese Journal of Geophysics, 2009, 52(2): 496-504.
|
[3] |
Zha X, Dai Z, Ge L, et al. Fault Geometry and Slip Distribution of the 2010 Yushu Earthquakes Inferred from InSAR Measurement[J]. Bulletin of the Seismological Society of America, 2011, 101(4): 1951-1958. doi: 10.1785/0120100192
|
[4] |
Xu W B. Finite-Fault Slip Model of the 2016 Mw 7.5 Chiloe Earthquake, Southern Chile, Estimated from Sentinel-1 Data[J]. Geophysical Research Letters, 2017, 44: 4774-4780. doi: 10.1002/2017GL073560
|
[5] |
刘洋, 许才军, 温扬茂. 门源Mw 5.9级地震形变InSAR观测及区域断裂带深部几何形态[J]. 武汉大学学报(信息科学版), 2019, 44(7): 1035-1042. doi: 10.13203/j.whugis20190069
Liu Yang, Xu Caijun, Wen Yangmao. InSAR Observation of Menyuan Mw 5.9 Earthquake Deformation and Deep Geometry of Regional Fault Zone[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 1035-1042. doi: 10.13203/j.whugis20190069
|
[6] |
李成龙, 张国宏, 单新建, 等. 2020年1月19日新疆伽师县Ms 6.4级地震InSAR同震形变场与断层滑动分布反演[J]. 地球物理学进展, 2021, 36(2): 481-488.
Li Chenglong, Zhang Guohong, Shan Xinjian, et al. Coseismic Deformation and Slip Distribution of the Ms 6.4 Jiashi, Xinjiang Earthquake Revealed by Sentinel-1A SAR Imagery[J]. Progress in Geophysics, 2021, 36(2): 481-488.
|
[7] |
Wright T J. Toward Mapping Surface Deformation in Three Dimensions Using InSAR[J]. Geophysical Research Letters, 2004, 31: L01607.
|
[8] |
Gray L. Using Multiple RADARSAT InSAR Pairs to Estimate a Full Three-Dimensional Solution for Glacial Ice Movement[J]. Geophysical Research Letters, 2011, 38(5): 132-140.
|
[9] |
王永哲, 李志伟, 朱建军, 等. 融合多平台DInSAR数据解算拉奎拉地震三维同震形变场[J]. 武汉大学学报(信息科学版), 2012, 37(7): 859-863. http://ch.whu.edu.cn/article/id/270
Wang Yongzhe, Li Zhiwei, Zhu Jianjun, et al. Coseismic Three-Dimensional Deformation of L'Aquila Earthquake Derived from Multi-platform DInSAR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(7): 859-863. http://ch.whu.edu.cn/article/id/270
|
[10] |
Fialko Y, Simons M, Agnew D. The Complete(3D) Surface Displacement Field in the Epicentral Area of the 1999 Mw 7.1 Hector Mine Earthquake, California, from Space Geodetic Observations[J]. Geophysical Research Letters, 2001, 28(16): 3063-3066. doi: 10.1029/2001GL013174
|
[11] |
Fialko Y, Sandwell D, Simons M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435(7040): 295-299. doi: 10.1038/nature03425
|
[12] |
Jung H S, Yun S H, Jo M J. An Improvement of Multiple-Aperture SAR Interferometry Performance in the Presence of Complex and Large Line-of-Sight Deformation[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4): 1743-1752. doi: 10.1109/JSTARS.2015.2399249
|
[13] |
Gudmundsson S, Sigmundsson F, Carstensen J M. Three-Dimensional Surface Motion Maps Estimated from Combined Interferometric Synthetic Aperture Radar and GPS Data[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): ETG13-1.
|
[14] |
Samsonov S, Tiampo K, Rundle J, et al. Application of DInSAR-GPS Optimization for Derivation of Fine-Scale Surface Motion Maps of Southern California[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(2): 512-521. doi: 10.1109/TGRS.2006.887166
|
[15] |
班保松, 伍吉仓, 陈永奇, 等. 联合GPS和InSAR观测结果计算汶川地震三维地表形变[J]. 大地测量与地球动力学, 2010, 30(4): 25-28.
Ban Baosong, Wu Jicang, Chen Yongqi, et al. Calculation of Three-Dimensional Terrain Deformation of Wenchuan Earthquake with GPS and InSAR Data[J]. Journal of Geodesy and Geodynamics, 2010, 30(4): 25-28.
|
[16] |
胡俊, 李志伟, 朱建军, 等. 基于BFGS法融合InSAR和GPS技术监测地表三维形变[J]. 地球物理学报, 2013, 56(1): 117-126.
Hu Jun, Li Zhiwei, Zhu Jianjun, et al. Measuring Three-Dimensional Surface Displacements from Combined InSAR and GPS Data Based on BFGS Method[J]. Chinese Journal of Geophysics, 2013, 56(1): 117-126.
|
[17] |
Guglielmino F, Nunnari G, Puglisi G, et al. Simultaneous and Integrated Strain Tensor Estimation from Geodetic and Satellite Deformation Measurements to Obtain Three-Dimensional Displacement Maps[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(6): 1815-1826. doi: 10.1109/TGRS.2010.2103078
|
[18] |
Luo H P, Chen T. Three-Dimensional Surface Displacement Field Associated with the 25 April 2015 Gorkha, Nepal, Earthquake: Solution from Integrated InSAR and GPS Measurements with an Extended SISTEM Approach[J]. Remote Sensing, 2016, 8(7): 559. doi: 10.3390/rs8070559
|
[19] |
袁霜, 何平, 温扬茂, 等. 综合InSAR和应变张量估计2016年Mw 7.0熊本地震同震三维形变场[J]. 地球物理学报, 2020, 63(4): 1340-1356.
Yuan Shuang, He Ping, Wen Yangmao, et al. Integrated InSAR and Strain Tensor to Estimate Three-Dimensional Coseismic Displacements Associated with the 2016 Mw 7.0 Kumamoto Earthquake[J]. Chinese Journal of Geophysics, 2020, 63(4): 1340-1356.
|
[20] |
Fujiwara S, Nishimura T, Murakami M, et al. 2.5-D Surface Deformation of M 6.1 Earthquake Near Mt Iwate Detected by SAR Interferometry[J]. Geophysical Research Letters, 2000, 27(14): 2049-2052. doi: 10.1029/1999GL011291
|
[21] |
彭颖, 许才军, 刘洋. 联合地震位错模型和InSAR数据构建2017年九寨沟Mw 6.5地震同震三维形变场[J]. 武汉大学学报(信息科学版), 2022, 47(11): 1896-1905. doi: 10.13203/j.whugis20200289
Peng Ying, Xu Caijun, Liu Yang. Deriving 3D Coseismic Deformation Field of 2017 Jiuzhaigou Earthquake with Elastic Dislocation Model and InSAR Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1896-1905. doi: 10.13203/j.whugis20200289
|
[22] |
杨九元, 温扬茂, 许才军. 2021年5月21日云南漾濞Ms 6.4地震: 一次破裂在隐伏断层上的浅源走滑事件[J]. 地球物理学报, 2021, 64(9): 3101-3110.
Yang Jiuyuan, Wen Yangmao, Xu Caijun. The 21 May 2021 Ms 6.4 Yangbi (Yunnan) Earthquake: A Shallow Strike-Slip Event Rupturing in a Blind Fault[J]. Chinese Journal of Geophysics, 2021, 64(9): 3101-3110.
|
[23] |
徐晓雪, 季灵运, 朱良玉, 等. 漾濞Ms 6.4地震同震形变特征及发震构造探讨[J]. 地震地质, 2021, 43(4): 771-789.
Xu Xiaoxue, Ji Lingyun, Zhu Liangyu, et al. The Co-seismic Deformation Characteristics and Seismogenic Structure of the Yangbi Ms 6.4 Earthquake[J]. Seismology and Geology, 2021, 43(4): 771-789.
|
[24] |
朱俊文, 姚赟胜, 张波. 基于Sentinel-1A数据反演漾濞Ms 6.4地震的同震形变场及断层几何参数[J]. 地震工程学报, 2021, 43(4): 784-790.
Zhu Junwen, Yao Yunsheng, Zhang Bo. Inversion of the Coseismic Deformation Field and Fault Geometric Parameters of the Yangbi Ms 6.4 Earthquake Based on Sentinel-1A Data[J]. China Earthquake Engineering Journal, 2021, 43(4): 784-790.
|
[25] |
李大虎, 丁志峰, 吴萍萍, 等. 2021年5月21日云南漾濞Ms 6.4地震震区地壳结构特征与孕震背景[J]. 地球物理学报, 2021, 64(9): 3083-3100.
Li Dahu, Ding Zhifeng, Wu Pingping, et al. The Characteristics of Crustal Structure and Seismogenic Background of Yangbi Ms 6.4 Earthquake on May 21, 2021 in Yunnan Province, China[J]. Chinese Journal of Geophysics, 2021, 64(9): 3083-3100.
|
[26] |
常祖峰, 常昊, 李鉴林, 等. 维西—乔后断裂南段正断层活动特征[J]. 地震研究, 2016, 39(4): 579-586.
Chang Zufeng, Chang Hao, Li Jianlin, et al. The Characteristic of Active Normal Faulting of the Southern Segment of Weixi-Qiaohou Fault[J]. Journal of Seismological Research, 2016, 39(4): 579-586.
|
[27] |
何付明, 常祖峰. 滇西北龙蟠—乔后断裂带桃源段晚第四纪活动特征研究[J]. 地震工程学报, 2022, 44(3): 579-591.
He Fuming, Chang Zufeng. Late Quaternary Activity Characteristics of the Taoyuan Section of Longpan-Qiaohou Fault Zone in Northwest Yunnan[J]. China Earthquake Engineering Journal, 2022, 44(3): 579-591.
|
[28] |
王绍俊, 刘云华, 单新建, 等. 2021年云南漾濞Ms 6.4地震同震地表形变与断层滑动分布[J]. 地震地质, 2021, 43(3): 692-705.
Wang Shaojun, Liu Yunhua, Shan Xinjian, et al. Coseismic Surface Deformation and Slip Models of the 2021 Ms 6.4 Yangbi(Yunnan, China) Earthquake[J]. Seismology and Geology, 2021, 43(3): 692-705.
|
[29] |
常祖峰, 常昊, 臧阳, 等. 维西—乔后断裂新活动特征及其与红河断裂的关系[J]. 地质力学学报, 2016, 22(3): 517-530.
Chang Zufeng, Chang Hao, Zang Yang, et al. Recent Active Features of Weixi-Qiaohou Fault and Its Relationship with the Honghe Fault[J]. Journal of Geomechanics, 2016, 22(3): 517-530.
|
[30] |
向宏发, 韩竹军, 虢顺民, 等. 红河断裂带大型右旋走滑运动与伴生构造地貌变形[J]. 地震地质, 2004, 26(4): 597-610.
Xiang Hongfa, Han Zhujun, Guo Shunmin, et al. Large-Scale Dextral Strike-Slip Movement and Asociated Tectonic Deformation Along the Red River Fault Zone[J]. Seismology and Geology, 2004, 26(4): 597-610.
|
[31] |
于书媛, 骆佳骥, 杨源源, 等. InSAR数据约束的2021年5月21日云南漾濞Ms 6.4地震发震构造研究[J]. 地震工程学报, 2021, 43(4): 777-783.
Yu Shuyuan, Luo Jiaji, Yang Yuanyuan, et al. Seismogenic Structure of the Yangbi, Yunnan Ms 6.4 Earthquake on May 21, 2021 Constrained by InSAR Data[J]. China Earthquake Engineering Journal, 2021, 43(4): 777-783.
|
[32] |
张克亮, 甘卫军, 梁诗明, 等. 2021年5月21日Ms 6. 4漾濞地震GNSS同震变形场及其约束反演的破裂滑动分布[J]. 地球物理学报, 2021, 64(7): 2253-2266.
Zhang Keliang, Gan Weijun, Liang Shiming, et al. Coseismic Displacement and Slip Distribution of the 2021 May 21, Ms 6.4, Yangbi Earthquake Derived from GNSS Observations[J]. Chinese Journal of Geophysics, 2021, 64(7): 2253-2266.
|
[33] |
Werner C, Wegmuller U, Strozzi T, et al. Gamma-SAR and Interferometric Processing Software[J]. Proceedings of the ESA Bulletin, 2000, 104: 15-23.
|
[34] |
Goldstein R M, Zebker H A, Werner C L. Satellite Radar Interferometry: Two-Dimensional Phase Un- wrapping[J]. Radio Science, 1988, 23(4): 713-720.
|
[35] |
Segall P. Earthquake and Volcano Deformation[M]. Princeton, NJ: Princeton University Press, 2010.
|
[36] |
Shen Z K, Jackson D D, Ge B X. Crustal Deformation Across and Beyond the Los Angeles Basin from Geodetic Measurements[J]. Journal of Geophysical Research: Solid Earth, 1996, 101(B12): 27957-27980.
|
[37] |
Pesci A, Teza G. Strain Rate Analysis over the Central Apennines from GPS Velocities: The Development of a New Free Software[J]. Cheminform, 2007, 37(11): 1231-1234.
|
[38] |
Okada Y. Surface Deformation to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismo-logical Society of America, 1985, 75(4): 1135-1154.
|
[39] |
Okada Y. Internal Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1992, 82(2): 1018-1040.
|
[1] | HU Zhuoming, YUAN Haijun, HE Xiufeng, ZHANG Zhetao, WANG Jin. Influence of MGEX Differential Code Bias Products on BDS-3 Pseudorange Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2024, 49(5): 756-764. DOI: 10.13203/j.whugis20210454 |
[2] | LIU Mingliang, AN Jiachun, WANG Zemin, ZHANG Baojun, SONG Xiangyu. Performance Analysis of BDS-3 Multi-frequency Pseudorange Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 902-910. DOI: 10.13203/j.whugis20200714 |
[3] | LIU Lilong, CHEN Jun, HUANG Liangke, WU Pituan, QIN Xuyuan, CAI Chenghui. A Sophisticated Klobuchar Model Based on the Holt Exponential Smoothing Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 599-604. DOI: 10.13203/j.whugis20150751 |
[4] | ZHANG Qiang, ZHAO Qile, ZHANG Hongping, HU Zhigang, WU Yue. Evaluation on the Precision of Klobuchar Model forBeiDou Navigation Satellite System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(2): 142-146. DOI: 10.13203/j.whugis20120716 |
[5] | RUAN Rengui, WU Xianbing, FENG Laiping. Comparison of Observation Models and Ionospheric Elimination Approaches for Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2013, 38(9): 1023-1028. |
[6] | YANG Zhe, SONG Shuli, XUE Junchen, ZHU Wenyao. Accuracy Assessment of Klobuchar Model and NeQuick Model in China[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 704-708. |
[7] | SHI Chuang, GU Shengfeng, GENG Changjiang, SONG Weiwei. High-Precision Single-Frequency Point Positioning with Randomness of Ionosphere Delay Correction in Consideration[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 807-810. |
[8] | SONG Weiwei, SHI Chuang, YAO Yibin, YE Shirong. Ionosphere Delay Processing Methods and Positioning Precision of Single Frequency Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 778-781. |
[9] | ZHANG Xiaohong, LI Xingxing, GUO Fei, ZHANG Ming. Realization and Precision Analysis of Single-Frequency Precise Point Positioning Software[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 783-787. |
[10] | LIU Zhimin, LIU Jingnan, LIU Hui. GPS Single-point Positioning Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 35-38. |