WANG Peng, LIU Jing, LIU Xiaoli, LIU Zhijun. Application of GNSS in the Study of Earth Surface Processes[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2159-2180. DOI: 10.13203/j.whugis20220113
Citation: WANG Peng, LIU Jing, LIU Xiaoli, LIU Zhijun. Application of GNSS in the Study of Earth Surface Processes[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2159-2180. DOI: 10.13203/j.whugis20220113

Application of GNSS in the Study of Earth Surface Processes

More Information
  • Received Date: January 15, 2023
  • Available Online: January 15, 2023
  • The earth surface system is the part of the earth system that is most closely related to human beings. The study of surface processes is becoming more and more important in earth system research. The innovative application of geophysics and geodesy to surface processes has gradually become a new interdisciplinary development direction. Global navigation satellite system (GNSS) observation technology is widely used in the study of surface processes because of its characteristics of high accuracy, all-weather, large range and quasi-real-time. In this paper, the application of GNSS technology in the study of surface processes is briefly introduced from the aspects of long-term crustal deformation, coseismic and post-seismic deformation, atmospheric precipitable water, load response, magma and volcanic activity, landslide monitoring and reflection measurement, and then the future development is discussed. The advantages of GNSS in observation technology highlight the importance of GNSS in the earth surface processes research.

  • [1]
    丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J]. 地球科学进展, 2013, 28(4): 407-419.

    Ding Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of Earth Surface Processes: Progress and Prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.
    [2]
    丁永建, 张世强, 韩添丁, 等. 由地表过程向地表系统科学研究跨越的机遇与挑战[J]. 地球科学进展, 2014, 29(4): 443-455.

    Ding Yongjian, Zhang Shiqiang, Han Tianding, et al. Opportunities and Challenges of Studies Across Land Surface Processes to Land Surface System Sciences[J]. Advances in Earth Science, 2014, 29(4): 443-455.
    [3]
    冷疏影, 宋长青. 陆地表层系统地理过程研究回顾与展望[J]. 地球科学进展, 2005, 20(6): 600-606.

    Leng Shuying, Song Changqing. Review of Land Surface Geographical Process Study and Prospects in China[J]. Advance in Earth Sciences, 2005, 20(6): 600-606.
    [4]
    Reid W V, Chen D, Goldfarb L, et al. Earth System Science for Global Sustainability: Grand Challenges[J]. Science, 2010, 330(6006): 916-917.
    [5]
    刘静, 张金玉, 葛玉魁, 等. 构造地貌学: 构造-气候-地表过程相互作用的交叉研究[J]. 科学通报, 2018, 63(30): 3070-3088.

    Liu Jing, Zhang Jinyu, Ge Yukui, et al. Tectonic Geomorphology: An Interdisciplinary Study of the Interaction Among Tectonic Climatic and Surface Processes[J]. Chinese Science Bulletin, 2018, 63(30): 3070-3088.
    [6]
    彭萍, 朱立平. 基于野外站网络的青藏高原地表过程观测研究[J]. 科技导报, 2017, 35(6): 97-102.

    Peng Ping, Zhu Liping. Observations of Land Surface Processes of the Tibetan Plateau Based on the Field Stations Network[J]. Science & Technology Review, 2017, 35(6): 97-102.
    [7]
    徐自为, 刘绍民, 车涛, 等. 黑河流域地表过程综合观测网的运行、维护与数据质量控制[J]. 资源科学, 2020, 42(10): 1975-1986.

    Xu Ziwei, Liu Shaomin, Che Tao, et al. Operation and Maintenance and Data Quality Control of the Heihe Integrated Observatory Network[J]. Resources Science, 2020, 42(10): 1975-1986.
    [8]
    Bock Y, Melgar D. Physical Applications of GPS Geodesy: A Review[J]. Reports on Progress in Physics Physical Society (Great Britain), 2016, 79(10): 106801.
    [9]
    宁津生, 姚宜斌, 张小红. 全球导航卫星系统发展综述[J]. 导航定位学报, 2013, 1(1): 3-8.

    Ning Jinsheng, Yao Yibin, Zhang Xiaohong. Review of the Development of Global Satellite Navigation System[J]. Journal of Navigation and Positioning, 2013, 1(1): 3-8.
    [10]
    Larson K M. Unanticipated Uses of the Global Positioning System[J]. Annual Review of Earth and Planetary Sciences, 2019, 47: 19-40.
    [11]
    王敏, 沈正康. 中国大陆现今构造变形: 三十年的GPS观测与研究[J]. 中国地震, 2020, 36(4): 660-683.

    Wang Min, Shen Zhengkang. Present-Day Tectonic Deformation in Continental China: Thirty Years of GPS Observation and Research[J]. Earthquake Research in China, 2020, 36(4): 660-683.
    [12]
    甘卫军, 李强, 张锐, 等. 中国大陆构造环境监测网络的建设与应用[J]. 工程研究-跨学科视野中的工程, 2012, 4(4): 324-331.

    Gan Weijun, Li Qiang, Zhang Rui, et al. Construction and Application of Tectonic and Environmental Observation Network of China’s Mainland[J]. Journal of Engineering Studies, 2012, 4(4): 324-331.
    [13]
    Herring T A, Melbourne T I, Murray M H, et al. Plate Boundary Observatory and Related Networks: GPS Data Analysis Methods and Geodetic Products[J]. Reviews of Geophysics, 2016, 54(4): 759-808.
    [14]
    王坦, 李瑜, 张锐, 等. GPS在我国地震监测中的应用现状与发展展望[J]. 地震研究, 2021, 44(2): 192-207.

    Wang Tan, Li Yu, Zhang Rui, et al. GPS in Earthquake Monitoring in China: Current Situation and Prospect[J]. Journal of Seismological Research, 2021, 44(2): 192-207.
    [15]
    Sagiya T. A Decade of GEONET: 1994-2003 the Continuous GPS Observation in Japan and Its Impact on Earthquake Studies[J]. Earth, Planets and Space, 2004, 56(8): xxix-xli.
    [16]
    Shen Z K, King R W, Agnew D C, et al. A Unified Analysis of Crustal Motion in Southern California, 1970-2004: The SCEC Crustal Motion Map[J]. Journal of Geophysical Research: Solid Earth, 2011, 116(B11): B11402.
    [17]
    Thatcher W, Foulger G R, Julian B R, et al. Present-Day Deformation Across the Basin and Range Province, Western United States[J]. Science, 1999, 283(5408): 1714-1718.
    [18]
    Wdowinski S, Smith-Konter B, Bock Y, et al. Diffuse Interseismic Deformation Across the Pacific-North America Plate Boundary[J]. Geology, 2007, 35(4): 311.
    [19]
    Sagiya T, Miyazaki S, Tada T. Continuous GPS Array and Present-Day Crustal Deformation of Japan[J]. Pure and Applied Geophysics, 2000, 157(11): 2303-2322.
    [20]
    牛之俊, 马宗晋, 陈鑫连, 等. 中国地壳运动观测网络[J]. 大地测量与地球动力学, 2002, 22(3): 88-93.

    Niu Zhijun, Ma Zongjin, Chen Xinlian, et al. Crustal Movement Observation Network of China[J]. Crustal Deformation and Earthquake, 2002, 22(3): 88-93.
    [21]
    Wang M, Shen Z K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018774.
    [22]
    Wang Q, Zhang P Z, Freymueller J T, et al. Present-Day Crustal Deformation in China Constrained by Global Positioning System Measurements[J]. Science, 2001, 294(5542): 574-577.
    [23]
    李强, 游新兆, 杨少敏, 等. 中国大陆构造变形高精度大密度GPS监测—现今速度场[J]. 中国科学: 地球科学, 2012, 42(5): 629-632.

    Li Qiang, You Xinzhao, Yang Shaomin, et al. High-Precision and High-Density GPS Monitoring of Structural Deformation in Chinese Mainland—Current Velocity Field[J]. Scientia Sinica (Terrae), 2012, 42(5): 629-632.
    [24]
    Zhang P Z, Shen Z K, Wang M, et al. Continuous Deformation of the Tibetan Plateau from Global Positioning System Data[J]. Geology, 2004, 32(9): 809.
    [25]
    Zhao B, Huang Y, Zhang C H, et al. Crustal Deformation on the Chinese Mainland During 1998-2014 Based on GPS Data[J]. Geodesy and Geodynamics, 2015, 6(1): 7-15.
    [26]
    Wang W, Qiao X J, Yang S M, et al. Present-Day Velocity Field and Block Kinematics of Tibetan Plateau from GPS Measurements[J]. Geophysical Journal International, 2017, 208(2): 1088-1102.
    [27]
    Zheng G, Wang H, Wright T J, et al. Crustal Deformation in the India-Eurasia Collision Zone from 25 Years of GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(11): 9290-9312.
    [28]
    Liang S M, Gan W J, Shen C Z, et al. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5722-5732.
    [29]
    Rui X, Stamps D S. A Geodetic Strain Rate and Tectonic Velocity Model for China[J]. Geochemistry, Geophysics, Geosystems, 2019, 20(3): 1280-1297.
    [30]
    王敏, 沈正康, 牛之俊, 等. 现今中国大陆地壳运动与活动块体模型[J]. 中国科学:地球科学, 2003, 33(S1): 21-32.

    Wang Min, Shen Zhengkang, Niu Zhijun, et al. Current Crustal Movement and Active Block Model in Chinese Mainland[J]. Scientia Sinica (Terrae), 2003, 33(S1): 21-32.
    [31]
    Shen Z K, Lü J N, Wang M, et al. Contemporary Crustal Deformation Around the Southeast Borderland of the Tibetan Plateau[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B11): B11409.
    [32]
    Meade B J. Present-Day Kinematics at the India-Asia Collision Zone[J]. Geology, 2007, 35(1): 81.
    [33]
    Thatcher W. Microplate Model for the Present-Day Deformation of Tibet[J]. Journal of Geophysical Research: Solid Earth, 2007, 112(B1): B01401.
    [34]
    Mao A L, Harrison C G A, Dixon T H. Noise in GPS Coordinate Time Series[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B2): 2797-2816.
    [35]
    Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS-Derived Site Position Time Series[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B4): 9-16.
    [36]
    Beavan J, Denys P, Denham M, et al. Distribution of Present-Day Vertical Deformation Across the Southern Alps, New Zealand, from 10 Years of GPS Data[J]. Geophysical Research Letters, 2010, 37(16): L16305.
    [37]
    Hao M, Freymueller J T, Wang Q L, et al. Vertical Crustal Movement Around the Southeastern Tibetan Plateau Constrained by GPS and GRACE Data[J]. Earth and Planetary Science Letters, 2016, 437: 1-8.
    [38]
    赵斌, 聂兆生, 黄勇, 等. 大规模GPS揭示的华北地区现今垂直运动[J]. 大地测量与地球动力学, 2014, 34(5): 35-39.

    Zhao Bin, Nie Zhaosheng, Huang Yong, et al. Vertical Motion of North China Inferred from Dense GPS Neasurements[J]. Journal of Geodesy and Geodynamics, 2014, 34(5): 35-39.
    [39]
    Kleinherenbrink M, Riva R, Frederikse T. Acomparison of Methods to Estimate Vertical Land Motion Trends from GNSS and Altimetry at Tide Gauge Stations[J]. Ocean Science, 2018, 14(2): 187-204.
    [40]
    Hammond W C, Blewitt G, Kreemer C, et al. GPS Imaging of Global Vertical Land Motion for Studies of Sea Level Rise[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(7): e2021JB022355.
    [41]
    Morton J Y T, van Diggelen F, Spilker J J, et al. Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications[M]. New Jersey: John Wiley & Sons, 2021.
    [42]
    Baldi P, Casula G, Cenni N, et al. GPS-Based Monitoring of Land Subsidence in the Po Plain (Northern Italy)[J]. Earth and Planetary Science Letters, 2009, 288(1/2): 204-212.
    [43]
    Karegar M A, Dixon T H, Engelhart S E. Subsidence Along the Atlantic Coast of North America: Insights from GPS and Late Holocene Relative Sea Level Data[J]. Geophysical Research Letters, 2016, 43(7): 3126-3133.
    [44]
    Bürgmann R, Hilley G, Ferretti A, et al. Resolving Vertical Tectonics in the San Francisco Bay Area from Permanent Scatterer InSAR and GPS Analysis[J]. Geology, 2006, 34(3): 221.
    [45]
    Osmanoğlu B, Dixon T H, Wdowinski S, et al. Mexico City Subsidence Observed with Persistent Scatterer InSAR[J]. International Journal of Applied Earth Observation and Geoinformation, 2011, 13(1): 1-12.
    [46]
    Du Z Y, Ge L L, Ng A H M, et al. Long-Term Subsidence in Mexico City from 2004 to 2018 Revealed by Five Synthetic Aperture Radar Sensors[J]. Land Degradation & Development, 2019, 30(15): 1785-1801.
    [47]
    Guo J M, Zhou L, Yao C L, et al. Surface Subsidence Analysis by Multi-temporal InSAR and GRACE: A Case Study in Beijing[J]. Sensors, 2016, 16(9): 1495.
    [48]
    Wang J, Howarth J D, McClymont E L, et al. Long-Term Patterns of Hillslope Erosion by Earthquake-Induced Landslides Shape Mountain Landscapes[J]. Science Advances, 2020, 6(23): eaaz6446.
    [49]
    Wang J, Jin Z D, Hilton R G, et al. Controls on Fluvial Evacuation of Sediment from Earthquake-Triggered Landslides[J]. Geology, 2015, 43(2): 115-118.
    [50]
    Wang J, Hilton R G, Jin Z D, et al. The Isotopic Composition and Fluxes of Particulate Organic Carbon Exported from the Eastern Margin of the Tibetan Plateau[J]. Geochimica et Cosmochimica Acta, 2019, 252: 1-15.
    [51]
    Wang J, Jin Z D, Hilton R G, et al. Earthquake-Triggered Increase in Biospheric Carbon Export from a Mountain Belt[J]. Geology, 2016, 44(6): 471-474.
    [52]
    Reid H F. The Mechanics of the Earthquake, the California Earthquake of April 18, 1906[J]. Carnegie Institute, Washington D C, 1910, 2: 3-56
    [53]
    Segall P, Davis J L. GPS Applications for Geodynamics and Earthquake Studies[J]. Annual Review of Earth and Planetary Sciences, 1997, 25: 301-336.
    [54]
    Scholz C H. The Mechanics of Earthquakes and Faulting[M]. Cambridge, UK: Cambridge University Press, 2018.
    [55]
    Harris R A. Large Earthquakes and Creeping Faults[J]. Reviews of Geophysics, 2017, 55(1): 169-198.
    [56]
    Savage J C, Burford R O. Geodetic Determination of Relative Plate Motion in Central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845.
    [57]
    Savage J C. A Dislocation Model of Strain Accumulation and Release at a Subduction Zone[J]. Journal of Geophysical Research: Solid Earth, 1983, 88(B6): 4984-4996.
    [58]
    McCaffrey R. Time-Dependent Inversion of Three-Component Continuous GPS for Steady and Transient Sources in Northern Cascadia[J]. Geophysical Research Letters, 2009, 36(7): L07304.
    [59]
    Jolivet R, Lasserre C, Doin M P, et al. Shallow Creep on the Haiyuan Fault (Gansu, China) Revealed by SAR Interferometry[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B6): B06401.
    [60]
    Li Y C, Nocquet J M, Shan X J, et al. Heterogeneous Interseismic Coupling Along the Xianshuihe-Xiaojiang Fault System, Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(11): e2020JB021187.
    [61]
    Hirose H, Hirahara K, Kimata F, et al. A Slow Thrust Slip Event Following the Two 1996 Hyuganada Earthquakes Beneath the Bungo Channel, Southwest Japan[J]. Geophysical Research Letters, 1999, 26(21): 3237-3240.
    [62]
    Dragert G, Wang K, James T S. A Silent Slip Event on the Deeper Cascadia Subduction Interface[J]. Science, 2001, 292(5521): 1525-1528.
    [63]
    Miller M M, Melbourne T, Johnson D J, et al. Periodic Slow Earthquakes from the Cascadia Subduction Zone[J]. Science, 2002, 295(5564): 2423.
    [64]
    Ohta Y, Freymueller J T, Hreinsdóttir S, et al. A Large Slow Slip Event and the Depth of the Seismogenic Zone in the South Central Alaska Subduction Zone[J]. Earth and Planetary Science Letters, 2006, 247(1/2): 108-116.
    [65]
    Outerbridge K C, Dixon T H, Schwartz S Y, et al. A Tremor and Slip Event on the Cocos-Caribbean Subduction Zone as Measured by a Global Positioning System (GPS) and Seismic Network on the Nicoya Peninsula, Costa Rica[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B10): B10408.
    [66]
    Brown K M, Tryon M D, De Shon H R, et al. Correlated Transient Fluid Pulsing and Seismic Tremor in the Costa Rica Subduction Zone[J]. Earth and Planetary Science Letters, 2005, 238(1/2): 189-203.
    [67]
    Lowry A R. Resonant Slow Fault Slip in Subduction Zones Forced by Climatic Load Stress[J]. Nature, 2006, 442(7104): 802-805.
    [68]
    Shen Z K. Pole-Tide Modulation of Slow Slip Events at Circum-Pacific Subduction Zones[J]. Bulletin of the Seismological Society of America, 2005, 95(5): 2009-2015.
    [69]
    Zhao B, Bürgmann R, Wang D Z, et al. Aseismic Slip and Recent Ruptures of Persistent Asperities Along the Alaska-Aleutian Subduction Zone[J]. Nature Communications, 2022, 13(1): 3098.
    [70]
    许才军, 王乐洋. 大地测量和地震数据联合反演地震震源破裂过程研究进展[J]. 武汉大学学报(信息科学版), 2010, 35(4): 457-462.

    Xu Caijun, Wang Leyang. Progress of Joint Inversion of Geodetic and Seismological Data for Seismic Source Rupture Process[J]. Geomatics and Information Science of Wuhan University, 2010, 35(4): 457-462.
    [71]
    Hartzell S, Mendoza C, Ramirez-Guzman L, et al. Rupture History of the 2008 Mw 7.9 Wenchuan, China, Earthquake: Evaluation of Separate and Joint Inversions of Geodetic, Teleseismic, and Strong-Motion Data[J]. Bulletin of the Seismological Society of America, 2013, 103(1): 353-370.
    [72]
    Wald D J, Heaton T H, Hudnut K W. The Slip History of the 1994 Northridge, California, Earthquake Determined from Strong-Motion, Teleseismic, GPS, and Leveling Data[J]. Bulletin of the Seismological Society of America, 1996, 86(1B): S49-S70.
    [73]
    Ma K F. Spatial and Temporal Distribution of Slip for the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 1069-1087.
    [74]
    许才军, 何平, 温扬茂, 等. 日本2011 Tohoku-Oki Mw 9.0级地震的同震形变及其滑动分布反演: GPS和InSAR约束[J]. 武汉大学学报(信息科学版), 2012, 37(12): 1387-1391.

    Xu Caijun, He Ping, Wen Yangmao, et al. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake: Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391.
    [75]
    Shen Z K, Sun J B, Zhang P Z, et al. Slip Maxima at Fault Junctions and Rupturing of Barriers During the 2008 Wenchuan Earthquake[J]. Nature Geoscience, 2009, 2: 718-724.
    [76]
    Wang Q, Qiao X J, Lan Q G, et al. Rupture of Deep Faults in the 2008 Wenchuan Earthquake and Uplift of the Longmen Shan[J]. Nature Geoscience, 2011, 4: 634-640.
    [77]
    Wang M, Wang F, Jiang X, et al. GPS Determined Coseismic Slip of the 2021 Mw 7.4 Maduo, China, Earthquake and Its Tectonic Implication[J]. Geophysical Journal International, 2021, 228(3): 2048-2055.
    [78]
    Yu S B. Preseismic Deformation and Coseismic Displacements Associated with the 1999 Chi-Chi, Taiwan, Earthquake[J]. Bulletin of the Seismological Society of America, 2004, 91(5): 995-1012.
    [79]
    Larson K M, Bodin P, Gomberg J. Using 1-Hz GPS Data to Measure Deformations Caused by the Denali Fault Earthquake[J]. Science, 2003, 300(5624): 1421-1424.
    [80]
    Bock Y, Prawirodirdjo L, Melbourne T I. Detection of Arbitrarily Large Dynamic Ground Motions with a Dense High-Rate GPS Network[J]. Geophysical Research Letters, 2004, 31(6): L06604.
    [81]
    Ji C, Larson K M, Tan Y, et al. Slip History of the 2003 San Simeon Earthquake Constrained by Combining 1-Hz GPS, Strong Motion, and Teleseismic Data[J]. Geophysical Research Letters, 2004, 31(17): L17608.
    [82]
    Miyazaki S, Larson K M, Choi K, et al. Modeling the Rupture Process of the 2003 September 25 Tokachi-Oki (Hokkaido) Earthquake Using 1-Hz GPS Data[J]. Geophysical Research Letters, 2004, 31(21): L21603.
    [83]
    殷海涛, 张培震, 甘卫军, 等. 高频GPS测定的汶川Ms 8.0级地震震时近场地表变形过程[J]. 科学通报, 2010, 55(26): 2621-2626.

    Yin Haitao, Zhang Peizhen, Gan Weijun, et al. Deformation Process of Near-Site Surface During Wenchuan Earthquake with Ms 8.0 Measured by High-Frequency GPS[J]. Chinese Science Bulletin, 2010, 55(26): 2621-2626.
    [84]
    柴海山, 陈克杰, 魏国光, 等. 北斗三号与超高频GNSS同震形变监测: 以2021年青海玛多Mw 7.4地震为例[J]. 武汉大学学报(信息科学版), 2022, 47(6): 946-954.

    Chai Haishan, Chen Kejie, Wei Guoguang, et al. Coseismic Deformation Monitoring Using BDS-3 and Ultra-High Rate GNSS: A Case Study of the 2021 Maduo Mw 7.4 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 946-954.
    [85]
    Chen K J, Avouac J P, Geng J H, et al. The 2021 Mw 7.4 Madoi Earthquake: An Archetype Bilateral Slip-Pulse Rupture Arrested at a Splay Fault[J]. Geophysical Research Letters, 2022, 49(2): e2021GL095243.
    [86]
    Delouis B, Nocquet J M, Vallée M. Slip Distribution of the February 27, 2010 Mw = 8.8 Maule Earthquake, Central Chile, from Static and High-Rate GPS, InSAR, and Broadband Teleseismic Data[J]. Geophysical Research Letters, 2010, 37(17): L17305.
    [87]
    Yue H, Lay T. Inversion of High-Rate (1 sps) GPS Data for Rupture Process of the 11 March 2011 Tohoku Earthquake (Mw 9.1)[J]. Geophysical Research Letters, 2011, 38(7): L00G09.
    [88]
    Galetzka J, Melgar D, Genrich J F, et al. Slip Pulse and Resonance of the Kathmandu Basin During the 2015 Gorkha Earthquake, Nepal[J]. Science, 2015, 349(6252): 1091-1095.
    [89]
    Vigny C, Socquet A, Peyrat S, et al. The 2010 Mw 8.8 Maule Megathrust Earthquake of Central Chile, Monitored by GPS[J]. Science, 2011, 332(6036): 1417-1421.
    [90]
    Smith S W, Wyss M. Displacement on the San Andreas Fault Subsequent to the 1966 Parkfield Earthquake[J]. Bulletin of the Seismological Society of America, 1968, 58(6): 1955-1973.
    [91]
    郭汝梦, 杨浩哲, 汤雄伟, 等. 卫星大地测量成像地震周期形变研究综述[J]. 武汉大学学报(信息科学版), 2022, 47(6): 799-806.

    Guo Rumeng, Yang Haozhe, Tang Xiongwei, et al. A Review on Satellite Geodesy Applied to Image the Earthquake Cycle Deformation[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 799-806.
    [92]
    Nur A, Mavko G. Postseismic Viscoelastic Rebound[J]. Science, 1974, 183(4121): 204-206.
    [93]
    Lienkaemper J J, DeLong S B, Domrose C J, et al. Afterslip Behavior Following the 2014 M 6.0 South Napa Earthquake with Implications for Afterslip Forecasting on Other Seismogenic Faults[J]. Seismological Research Letters, 2016, 87(3): 609-619.
    [94]
    Guo R M, Zheng Y, Xu J Q, et al. Seismic and Aseismic Fault Slip Associated with the 2017 Mw 8.2 Chiapas, Mexico, Earthquake Sequence[J]. Seismological Research Letters, 2019, 90(3): 1111-1120.
    [95]
    Liu-Zeng J, Zhang Z, Rollins C, et al. Postseismic Deformation Following the 2015 Mw 7.8 Gorkha (Nepal) Earthquake: New GPS Data, Kinematic and Dynamic Models, and the Roles of Afterslip and Viscoelastic Relaxation[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(9): e2020JB019852.
    [96]
    Liu K, Geng J H, Wen Y M, et al. Very Early Postseismic Deformation Following the 2015 Mw 8.3 Illapel Earthquake, Chile Revealed from Kinematic GPS[J]. Geophysical Research Letters, 2022, 49(11): e2022GL098526.
    [97]
    Peltzer G, Rosen P, Rogez F, et al. Postseismic Rebound in Fault Step-Overs Caused by Pore Fluid Flow[J]. Science, 1996, 273(5279): 1202-1204.
    [98]
    Jónsson S, Segall P, Pedersen R, et al. Post-Earthquake Ground Movements Correlated to Pore-Pressure Transients[J]. Nature, 2003, 424(6945): 179-183.
    [99]
    Peltzer G, Rosen P, Rogez F, et al. Poroelastic Rebound Along the Landers 1992 Earthquake Surface Rupture[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B12): 30131-30145.
    [100]
    Hu Y, Bürgmann R, Freymueller J T, et al. Contributions of Poroelastic Rebound and a Weak Volcanic Arc to the Postseismic Deformation of the 2011 Tohoku Earthquake[J]. Earth, Planets and Space, 2014, 66(1): 106.
    [101]
    Yang H Z, Guo R M, Zhou J C, et al. Transient Poroelastic Response to Megathrust Earthquakes: A Look at the 2015 Mw 8.3 Illapel, Chile, Event[J]. Geophysical Journal International, 2022, 230(2): 908-915.
    [102]
    Panuntun H, Miyazaki S, Fukuda Y, et al. Probing the Poisson’s Ratio of Poroelastic Rebound Following the 2011 Mw 9.0 Tohoku Earthquake[J]. Geophysical Journal International, 2018, 215(3): 2206-2221.
    [103]
    McCormack K, Hesse M A, Dixon T, et al. Modeling the Contribution of Poroelastic Deformation to Postseismic Geodetic Signals[J]. Geophysical Research Letters, 2020, 47(8): e2020GL086945.
    [104]
    Bürgmann R, Dresen G. Rheology of the Lower Crust and Upper Mantle: Evidence from Rock Mechanics, Geodesy, and Field Observations[J]. Annual Review of Earth and Planetary Sciences, 2008, 36: 531-567.
    [105]
    Sun T, Wang K L, Iinuma T, et al. Prevalence of Viscoelastic Relaxation After the 2011 Tohoku-Oki Earthquake[J]. Nature, 2014, 514(7520): 84-87.
    [106]
    Zhao B, Bürgmann R, Wang D Z, et al. Dominant Controls of Downdip Afterslip and Viscous Relaxation on the Postseismic Displacements Following the Mw 7.9 Gorkha, Nepal, Earthquake[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(10): 8376-8401.
    [107]
    Huang M H, Bürgmann R, Freed A M. Probing the Lithospheric Rheology Across the Eastern Margin of the Tibetan Plateau[J]. Earth and Planetary Science Letters, 2014, 396: 88-96.
    [108]
    Tian Z, Freymueller J T, Yang Z Q. Spatio-Temporal Variations of Afterslip and Viscoelastic Relaxation Following the Mw 7.8 Gorkha (Nepal) Earthquake[J]. Earth and Planetary Science Letters, 2020, 532: 116031.
    [109]
    Wang M, Shen Z K, Wang Y Z, et al. Postseismic Deformation of the 2008 Wenchuan Earthquake Illuminates Lithospheric Rheological Structure and Dynamics of Eastern Tibet[J]. Journal of Geophysical Research: Solid Earth, 2021, 126(9): e2021JB022399.
    [110]
    Kiehl J T, Trenberth K E. Earth’s Annual Global Mean Energy Budget[J]. Bulletin of the American Meteorological Society, 1997, 78(2): 197-208.
    [111]
    Bevis M, Businger S, Chiswell S, et al. GPS Me-teorology: Mapping Zenith Wet Delays Onto Precipitable Water[J]. Journal of Applied Meteorology, 1994, 33(3): 379-386.
    [112]
    Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research: Atmospheres, 1992, 97(D14): 15787-15801.
    [113]
    Rocken C, Hove T V, Johnson J, et al. GPS/STORM—GPS Sensing of Atmospheric Water Vapor for Meteorology[J]. Journal of Atmospheric and Oceanic Technology, 1995, 12(3): 468-478.
    [114]
    Rocken C, Ware R, Van Hove T, et al. Sensing Atmospheric Water Vapor with the Global Positioning System[J]. Geophysical Research Letters, 1993, 20(23): 2631-2634.
    [115]
    Duan J P, Bevis M, Fang P, et al. GPS Meteorology: Direct Estimation of the Absolute Value of Precipitable Water[J]. Journal of Applied Meteorology, 1996, 35(6): 830-838.
    [116]
    Flores A, Ruffini G, Rius A. 4D Tropospheric Tomography Using GPS Slant Wet Delays[J]. Annales Geophysicae, 2000, 18(2): 223-234.
    [117]
    Haji Aghajany S, Amerian Y. Three Dimensional Ray Tracing Technique for Tropospheric Water Vapor Tomography Using GPS Measurements[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2017, 164: 81-88.
    [118]
    Braun J, Rocken C, Liljegren J. Comparisons of Line-of-Sight Water Vapor Observations Using the Global Positioning System and a Pointing Microwave Radiometer[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20(5): 606-612.
    [119]
    Wang Y C, Ding N, Zhang Y, et al. A New Approach of the Global Navigation Satellite System Tomography for any Size of GNSS Network[J]. Remote Sensing, 2020, 12(4): 617.
    [120]
    刘敏, 郭鹏, 叶其欣, 等. 上海地区地基GPS水汽三维层析技术和初步应用[J]. 天文学报, 2010, 51(3): 299-308.

    Liu Min, Guo Peng, Ye Qixin, et al. The 3D Tomography Technique and Application of Water Vapor Using Ground-Based GPS Networks in Shanghai[J]. Acta Astronomica Sinica, 2010, 51(3): 299-308.
    [121]
    张双成, 刘经南, 叶世榕, 等. 顾及双差残差反演GPS信号方向的斜路径水汽含量[J]. 武汉大学学报(信息科学版), 2009, 34(1): 100-104.

    Zhang Shuangcheng, Liu Jingnan, Ye Shirong, et al. Retrieval of Water Vapor Along the GPS Slant Path Based on Double-Differenced Residuals[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 100-104.
    [122]
    Landskron D, Böhm J. VMF3/GPT3: Refined Discrete and Empirical Troposphere Mapping Functions[J]. Journal of Geodesy, 2018, 92(4): 349-360.
    [123]
    Leandro R, Santos M, Langley R. UNB Neutral Atmosphere Models: Development and Performance [C]//National Technical Meeting of the Institute of Navigation, California, USA, 2006.
    [124]
    Li W, Yuan Y B, Ou J K, et al. A New Global Zenith Tropospheric Delay Model IGGtrop for GNSS Applications[J]. Chinese Science Bulletin, 2012, 57(17): 2132-2139.
    [125]
    Boehm J, Niell A, Tregoning P, et al. Global Mapping Function (GMF): A New Empirical Mapping Function Based on Numerical Weather Model Data[J]. Geophysical Research Letters, 2006, 33(7): L07304.
    [126]
    Boehm J, Schuh H. Vienna Mapping Functions in VLBI Analyses[J]. Geophysical Research Letters, 2004, 31(1): L01603.
    [127]
    Boehm J, Werl B, Schuh H. Troposphere Mapping Functions for GPS and Very Long Baseline Interfero-metry from European Centre for Medium-Range Weather Forecasts Operational Analysis Data[J]. Journal of Geophysical Research: Solid Earth, 2006, 111(B2): B02406.
    [128]
    Ding M H. A Second Generation of the Neural Network Model for Predicting Weighted Mean Temperature[J]. GPS Solutions, 2020, 24(2): 61.
    [129]
    Huang L K, Liu L L, Chen H, et al. An Improved Atmospheric Weighted Mean Temperature Model and Its Impact on GNSS Precipitable Water Vapor Estimates for China[J]. GPS Solutions, 2019, 23(2): 51.
    [130]
    Ding M H. A Neural Network Model for Predicting Weighted Mean Temperature[J]. Journal of Geodesy, 2018, 92(10): 1187-1198.
    [131]
    Yao Y B, Zhu S, Yue S Q. A Globally Applicable, Season-Specific Model for Estimating the Weighted Mean Temperature of the Atmosphere[J]. Journal of Geodesy, 2012, 86(12): 1125-1135.
    [132]
    Wang J H, Zhang L Y, Dai A G. Global Estimates of Water-Vapor-Weighted Mean Temperature of the Atmosphere for GPS Applications[J]. Journal of Geophysical Research: Atmospheres, 2005, 110(D21): e2005jd006215.
    [133]
    曲建光, 刘基余, 韩中元. 利用天顶对流层延迟数据直接推算水汽含量的研究[J]. 武汉大学学报(信息科学版), 2005, 30(7): 625-628.

    Qu Jianguang, Liu Jiyu, Han Zhongyuan. Research on the Calculating Directly Water Vapor Value Using Zenith Tropospheric Delay Data[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 625-628.
    [134]
    王勇, 刘严萍, 柳林涛, 等. 区域GPS网对流层延迟直接推算可降水量研究[J]. 热带气象学报, 2007, 23(5): 510-514.

    Wang Yong, Liu Yanping, Liu Lintao, et al. The Study of Directly Calculating Precipitable Water Vapor with Zenith Tropospheric Delay of GPS Network[J]. Journal of Tropical Meteorology, 2007, 23(5): 510-514.
    [135]
    王勇, 刘严萍, 柳林涛, 等. 无气象要素的GPS对流层延迟推算可降水量的研究[J]. 测绘科学, 2007, 32(3): 122-124.

    Wang Yong, Liu Yanping, Liu Lintao, et al. The Study of Calculating Precipitable Water Vapor Using GPS Zenith Tropospheric Delay Without Meteorological Data[J]. Science of Surveying and Mapping, 2007, 32(3): 122-124.
    [136]
    王勇, 柳林涛, 郝晓光, 等. 武汉地区GPS气象网应用研究[J]. 测绘学报, 2007, 36(2): 141-145.

    Wang Yong, Liu Lintao, Hao Xiaoguang, et al. The Application Study of the GPS Meteorology Network in Wuhan Region[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(2): 141-145.
    [137]
    易正晖, 王帅民, 王勇, 等. GNSS对流层延迟推算可降水量的季节转换模型研究[J]. 大地测量与地球动力学, 2017, 37(8): 830-834.

    Yi Zhenghui, Wang Shuaimin, Wang Yong, et al. Research on Seasonal Transition Model of GNSS Zenith Tropospheric Delay Calculating Precipitable Water Vapor[J]. Journal of Geodesy and Geodynamics, 2017, 37(8): 830-834.
    [138]
    Hagemann S, Bengtsson L, Gendt G. On the Determination of Atmospheric Water Vapor from GPS Measurements[J]. Journal of Geophysical Research: Atmospheres, 2003, 108(D21): e2002jd003235.
    [139]
    Wang Y, Yang K, Pan Z Y, et al. Evaluation of Precipitable Water Vapor from Four Satellite Products and Four Reanalysis Datasets Against GPS Measurements on the Southern Tibetan Plateau[J]. Journal of Climate, 2017, 30(15): 5699-5713.
    [140]
    Zhang W X, Lou Y D, Huang J F, et al. Multiscale Variations of Precipitable Water over China Based on 1999-2015 Ground-Based GPS Observations and Evaluations of Reanalysis Products[J]. Journal of Climate, 2018, 31(3): 945-962.
    [141]
    Zhang Y L, Cai C S, Chen B Y, et al. Consistency Evaluation of Precipitable Water Vapor Derived from ERA5, ERA-Interim, GNSS, and Radiosondes over China[J]. Radio Science, 2019, 54(7): 561-571.
    [142]
    Xiong Z H, Sang J Z, Sun X G, et al. Comparisons of Performance Using Data Assimilation and Data Fusion Approaches in Acquiring Precipitable Water Vapor: A Case Study of a Western United States of America Area[J]. Water, 2020, 12(10): 2943.
    [143]
    Zhang B, Yao Y B, Xin L Y, et al. Precipitable Water Vapor Fusion: An Approach Based on Spherical Cap Harmonic Analysis and Helmert Variance Component Estimation[J]. Journal of Geodesy, 2019, 93(12): 2605-2620.
    [144]
    Zhao Q Z, Du Z, Yao W Q, et al. Hybrid Precipitable Water Vapor Fusion Model in China[J]. Journal of Atmospheric and Solar⁃Terrestrial Physics, 2020, 208: 105387.
    [145]
    van Dam T M, Herring T A. Detection of Atmospheric Pressure Loading Using Very Long Baseline Interferometry Measurements[J]. Journal of Geophysical Research: Solid Earth, 1994, 99(B3): 4505-4517.
    [146]
    van Dam T M, Wahr J, Chao Y, et al. Predictions of Crustal Deformation and of Geoid and Sea-Level Variability Caused by Oceanic and Atmospheric Loading[J]. Geophysical Journal International, 1997, 129(3): 507-517.
    [147]
    龚国栋, 花向红, 贺小星, 等. GPS坐标时间序列中地表环境负载效应区域特征分析[J]. 大地测量与地球动力学, 2017, 37(9): 961-967.

    Gong Guodong, Hua Xianghong, He Xiaoxing, et al. Analysis of Regional Characteristics of Environment Load Effect in GPS Coordinate Time Series[J]. Journal of Geodesy and Geodynamics, 2017, 37(9): 961-967.
    [148]
    Dam T V, Collilieux X, Wuite J, et al. Nontidal Ocean Loading: Amplitudes and Potential Effects in GPS Height Time Series[J]. Journal of Geodesy, 2012, 86(11): 1043-1057.
    [149]
    刘经南, 张化疑, 刘焱雄, 等. GNSS研究海潮负荷效应进展[J]. 武汉大学学报(信息科学版), 2016, 41(1): 9-14.

    Liu Jingnan, Zhang Huayi, Liu Yanxiong, et al. Progress of Ocean Tide Loading Inversion Based on GNSS[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 9-14.
    [150]
    Dach R, Böhm J, Lutz S, et al. Evaluation of the Impact of Atmospheric Pressure Loading Modeling on GNSS Data Analysis[J]. Journal of Geodesy, 2011, 85(2): 75-91.
    [151]
    Tregoning P, van Dam T M. Atmospheric Pressure Loading Corrections Applied to GPS Data at the Observation Level[J]. Geophysical Research Letters, 2005, 32(22): L22310.
    [152]
    Tregoning P, van Dam T M. Effects of Atmospheric Pressure Loading and Seven-Parameter Transformations on Estimates of Geocenter Motion and Station Heights from Space Geodetic Observations[J]. Journal of Geophysical Research: Solid Earth, 2005, 110(B3): B03408.
    [153]
    Liu L, Khan S A, van Dam T M, et al. Annual Variations in GPS-Measured Vertical Displacements near Upernavik Isstrøm (Greenland) and Contributions from Surface Mass Loading[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(1): 677-691.
    [154]
    Williams S D P, Penna N T. Non-tidal Ocean Loading Effects on Geodetic GPS Heights[J]. Geophysical Research Letters, 2011, 38(9): L09314.
    [155]
    Martens H R, Argus D F, Norberg C, et al. Atmospheric Pressure Loading in GPS Positions: Dependency on GPS Processing Methods and Effect on Assessment of Seasonal Deformation in the Contiguous USA and Alaska[J]. Journal of Geodesy, 2020, 94(12): 115.
    [156]
    陆桂华, 何海. 全球水循环研究进展[J]. 水科学进展, 2006, 17(3): 419-424.

    Lu Guihua, He Hai. View of Global Hydrological Cycle[J]. Advances in Water Science, 2006, 17(3): 419-424.
    [157]
    Bettinelli P, Avouac J P, Flouzat M, et al. Seasonal Variations of Seismicity and Geodetic Strain in the Himalaya Induced by Surface Hydrology[J]. Earth and Planetary Science Letters, 2008, 266(3/4): 332-344.
    [158]
    Argus D F, Fu Y N, Landerer F W. Seasonal Variation in Total Water Storage in California Inferred from GPS Observations of Vertical Land Motion[J]. Geophysical Research Letters, 2014, 41(6): 1971-1980.
    [159]
    Borsa A A, Agnew D C, Cayan D R. Ongoing Drought-Induced Uplift in the Western United States[J]. Science, 2014, 345(6204): 1587-1590.
    [160]
    Argus D F, Landerer F W, Wiese D N, et al. Sustained Water Loss in California’s Mountain Ranges During Severe Drought from 2012 to 2015 Inferred from GPS[J]. Journal of Geophysical Research: Solid Earth, 2017, 122(12): 10559-10585.
    [161]
    Jiang W P, Yuan P, Chen H, et al. Annual Variations of Monsoon and Drought Detected by GPS: A Case Study in Yunnan, China[J]. Scientific Reports, 2017, 7(1): 5874.
    [162]
    Zhan W, Li F, Hao W F, et al. Regional Characte-ristics and Influencing Factors of Seasonal Vertical Crustal Motions in Yunnan, China[J]. Geophysical Journal International, 2017, 210(3): 1295-1304.
    [163]
    盛传贞, 甘卫军, 梁诗明, 等. 滇西地区GPS时间序列中陆地水载荷形变干扰的GRACE分辨与剔除[J]. 地球物理学报, 2014, 57(1): 42-52.

    Sheng Chuanzhen, Gan Weijun, Liang Shiming, et al. Identification and Elimination of Non-tectonic Crustal Deformation Caused by Land Water from GPS Time Series in the Western Yunnan Province Based on GRACE Observations[J]. Chinese Journal of Geophysics, 2014, 57(1): 42-52.
    [164]
    丁一航, 黄丁发, 师悦龄, 等. 利用GPS和GRACE分析四川地表垂向位移变化[J]. 地球物理学报, 2018, 61(12): 4777-4788.

    Ding Yihang, Huang Dingfa, Shi Yueling, et al. Determination of Vertical Surface Displacements in Sichuan Using GPS and GRACE Measurements[J]. Chinese Journal of Geophysics, 2018, 61(12): 4777-4788.
    [165]
    胡顺强, 王坦, 管雅慧, 等. 利用GPS和水文负载模型研究云南地区垂向季节性波动变化和构造变形[J]. 地球物理学报, 2021, 64(8): 2613-2630.

    Hu Shunqiang, Wang Tan, Guan Yahui, et al. Analyzing the Seasonal Fluctuation and Vertical Deformation in Yunnan Province Based on GPS Measurement and Hydrological Loading Model[J]. Chinese Journal of Geophysics, 2021, 64(8): 2613-2630.
    [166]
    Borsa A A, Mencin D, van Dam T M. The Weight of a Storm: What Observations of Earth Surface Deformation Can Tell Us About Hurricane Harvey[J].AGU Fall Meeting Abstracts, 2017, 23: 2872.
    [167]
    汪汉胜, Wu Patrick, 许厚泽. 冰川均衡调整(GIA)的研究[J]. 地球物理学进展, 2009, 24(6): 1958-1967.

    Wang Hansheng, Wu Patrick, Xu Houze. A Review of Research in Glacial Isostatic Adjustment[J]. Progress in Geophysics, 2009, 24(6): 1958-1967.
    [168]
    Jiang Y, Dixon T H, Wdowinski S. Accelerating Uplift in the North Atlantic Region as an Indicator of Ice Loss[J]. Nature Geoscience, 2010, 3: 404-407.
    [169]
    Khan S A, Sasgen I, Bevis M, et al. Geodetic Measurements Reveal Similarities Between Post–Last Glacial Maximum and Present-Day Mass Loss from the Greenland Ice Sheet[J]. Science Advances, 2016, 2(9): e1600931.
    [170]
    Bevis M, Wahr J, Khan S A, et al. Bedrock Displacements in Greenland Manifest Ice Mass Variations, Climate Cycles and Climate Change[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(30): 11944-11948.
    [171]
    Larsen C F, Motyka R J, Freymueller J T, et al. Rapid Viscoelastic Uplift in Southeast Alaska Caused by Post-Little Ice Age Glacial Retreat[J]. Earth and Planetary Science Letters, 2005, 237(3/4): 548-560.
    [172]
    Elliott J L, Larsen C F, Freymueller J T, et al. Tectonic Block Motion and Glacial Isostatic Adjustment in Southeast Alaska and Adjacent Canada Constrained by GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2010, 115(B9): B09407.
    [173]
    Hu Y, Freymueller J T. Geodetic Observations of Time-Variable Glacial Isostatic Adjustment in Southeast Alaska and Its Implications for Earth Rheology[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(9): 9870-9889.
    [174]
    Zwally H J, Abdalati W, Herring T, et al. Surface Melt-Induced Acceleration of Greenland Ice-Sheet Flow[J]. Science, 2002, 297(5579): 218-222.
    [175]
    Das S B, Joughin I, Behn M D, et al. Fracture Propagation to the Base of the Greenland Ice Sheet During Supraglacial Lake Drainage[J]. Science, 2008, 320(5877): 778-781.
    [176]
    Pratt M J, Winberry J P, Wiens D A, et al. Seismic and Geodetic Evidence for Grounding-Line Control of Whillans Ice Stream Stick-Slip Events[J]. Journal of Geophysical Research: Earth Surface, 2014, 119(2): 333-348.
    [177]
    艾松涛, 王泽民, 鄂栋臣, 等. 利用GPS的北极冰川运动监测与分析[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1337-1340.

    Ai Songtao, Wang Zemin, Dongchen E, et al. Surface Movement Research of Arctic Glaciers Using GPS Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1337-1340.
    [178]
    Bartholomaus T C, Anderson R S, Anderson S P. Response of Glacier Basal Motion to Transient Water Storage[J]. Nature Geoscience, 2008, 1: 33-37.
    [179]
    Roeoesli C, Helmstetter A, Walter F, et al. Meltwater Influences on Deep Stick-Slip Icequakes near the Base of the Greenland Ice Sheet[J]. Journal of Geophysical Research: Earth Surface, 2016, 121(2): 223-240.
    [180]
    Liu Z, Dong D N, Lundgren P. Constraints on Time-Dependent Volcanic Source Models at Long Valley Caldera from 1996 to 2009 Using InSAR and Geodetic Measurements[J]. Geophysical Journal International, 2011, 187(3): 1283-1300.
    [181]
    Mattia M, Rossi M, Guglielmino F, et al. The Shallow Plumbing System of Stromboli Island as Imaged from 1 Hz Instantaneous GPS Positions[J]. Geophysical Research Letters, 2004, 31(24): L24610.
    [182]
    Sigmundsson F, Hreinsdóttir S, Hooper A, et al. Intrusion Triggering of the 2010 Eyjafjallajökull Explosive Eruption[J]. Nature, 2010, 468(7322): 426-430.
    [183]
    顾国华, 王武星. GPS测得的2018年夏威夷6.9级地震与火山喷发地壳运动[J]. 武汉大学学报(信息科学版), 2019, 44(8): 1191-1197.

    Gu Guohua, Wang Wuxing. Crustal Motions Observed from GPS Observations for the M 6.9 Earthquake in Hawaii and the Eruption of the Kilauea Volcano in 2018[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1191-1197.
    [184]
    张恒荣, 刘国明, 武成智, 等. 长白山天池火山监测与火山活动状态的初步分析[J]. 地震地质, 2003, 25(S1): 109-120.

    Zhang Hengrong, Liu Guoming, Wu Chengzhi, et al. Preliminary Study on the Active State of Changbaishan Tianchi Volcano[J]. Seismology and Geology, 2003, 25(S1): 109-120.
    [185]
    陈国浒, 单新建, M.Moon Wooil, 等. 基于InSAR、GPS形变场的长白山地区火山岩浆囊参数模拟研究[J]. 地球物理学报, 2008, 51(4): 1085-1092.

    Chen Guohu, Shan Xinjian, Moon W M, et al. A Modeling of the Magma Chamber Beneath the Changbai Mountains Volcanic Area Constrained by InSAR and GPS Derived Deformation[J]. Chinese Journal of Geophysics, 2008, 51(4): 1085-1092.
    [186]
    王凡, 沈正康, 王阎昭, 等. 2011年3月11日日本宫城Mw 9.0级地震对其周边地区火山活动的影响[J]. 科学通报, 2011, 56(14): 1080-1083.

    Wang Fan, Shen Zhengkang, Wang Yanzhao, et al. Influence of March 11th, 2011 Miyagi Mw 9.0 Earthquake on Volcanic Activities in Its Surrounding Areas[J]. Chinese Science Bulletin, 2011, 56(14): 1080-1083.
    [187]
    Biggs J, Pritchard M E. Global Volcano Monitoring: What Does It Mean when Volcanoes Deform?[J]. Elements, 2017, 13(1): 17-22.
    [188]
    Dzurisin D, Lisowski M, Wicks C W. Continuing Inflation at Three Sisters Volcanic Center, Central Oregon Cascade Range, USA, from GPS, Leveling, and InSAR Observations[J]. Bulletin of Volcanology, 2009, 71(10): 1091-1110.
    [189]
    Parks M M, Biggs J, England P, et al. Evolution of Santorini Volcano Dominated by Episodic and Rapid Fluxes of Melt from Depth[J]. Nature Geoscience, 2012, 5: 749-754.
    [190]
    Annen C, Blundy J D, Sparks R S J. The Genesis of Intermediate and Silicic Magmas in Deep Crustal Hot Zones[J]. Journal of Petrology, 2006, 47(3): 505-539.
    [191]
    Wiebe R A, Collins W J. Depositional Features and Stratigraphic Sections in Granitic Plutons: Implications for the Emplacement and Crystallization of Granitic Magma[J]. Journal of Structural Geology, 1998, 20(9/10): 1273-1289.
    [192]
    Head M, Hickey J, Gottsmann J, et al. The Influence of Viscoelastic Crustal Rheologies on Volcanic Ground Deformation: Insights from Models of Pressure and Volume Change[J]. Journal of Geophysical Research: Solid Earth, 2019, 124(8): 8127-8146.
    [193]
    Townsend M. Linking Surface Deformation to Thermal and Mechanical Magma Chamber Processes[J]. Earth and Planetary Science Letters, 2022, 577: 117272.
    [194]
    黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3): 433-454.

    Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3): 433-454.
    [195]
    张铎, 吴中海, 李家存, 等. 国内外地震滑坡研究综述[J]. 地质力学学报, 2013, 19(3): 225-241.

    Zhang Duo, Wu Zhonghai, Li Jiacun, et al. An Overview on Earthquake-Induced Landslide Research[J]. Journal of Geomechanics, 2013, 19(3): 225-241.
    [196]
    Yin Y P, Wang F W, Sun P. Landslide Hazards Triggered by the 2008 Wenchuan Earthquake, Sichuan, China[J]. Landslides, 2009, 6(2): 139-152.
    [197]
    Xu C, Xu X W, Yao X, et al. Three (Nearly) Complete Inventories of Landslides Triggered by the May 12, 2008 Wenchuan Mw 7.9 Earthquake of China and Their Spatial Distribution Statistical Analysis[J]. Landslides, 2014, 11(3): 441-461.
    [198]
    Delbridge B G, Bürgmann R, Fielding E, et al. Three-Dimensional Surface Deformation Derived from Airborne Interferometric UAVSAR: Application to the Slumgullion Landslide[J]. Journal of Geophysical Research: Solid Earth, 2016, 121(5): 3951-3977.
    [199]
    Malet J P, Maquaire O, Calais E. The Use of Global Positioning System Techniques for the Continuous Monitoring of Landslides: Application to the Super-Sauze Earthflow (Alpes-de-Haute-Provence, France)[J]. Geomorphology, 2002, 43(1/2): 33-54.
    [200]
    Hsu Y J, Chen R F, Lin C W, et al. Seasonal, Long-Term, and Short-Term Deformation in the Central Range of Taiwan Induced by Landslides[J]. Geology, 2014, 42(11): 991-994.
    [201]
    Wang G Q. GPS Landslide Monitoring: Single Base Vs. Network Solutions—A Case Study Based on the Puerto Rico and Virgin Islands Permanent GPS Network[J]. Journal of Geodetic Science, 2011, 1(3): 191-203.
    [202]
    Wu J H, Lin H M. Analyzing the Shear Strength Parameters of the Chiu-fen-erh-shan Landslide: Integrating Strong-Motion and GPS Data to Determine the Best-Fit Accelerogram[J]. GPS Solutions, 2009, 13(2): 153-163.
    [203]
    Axelrad P, Comp C J, Macdoran P F. SNR-Based Multipath Error Correction for GPS Differential Phase[J]. IEEE Transactions on Aerospace and Electronic Systems, 1996, 32(2): 650-660.
    [204]
    金双根, 张勤耘, 钱晓东. 全球导航卫星系统反射测量(GNSS+R)最新进展与应用前景[J]. 测绘学报, 2017, 46(10): 1389-1398.

    Jin Shuanggen, Zhang Qinyun, Qian Xiaodong. New Progress and Application Prospects of Global Navigation Satellite System Reflectometry (GNSS+R)[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(10): 1389-1398.
    [205]
    Larson K M. GPS Interferometric Reflectometry: Applications to Surface Soil Moisture, Snow Depth, and Vegetation Water Content in the Western United States[J]. WIREs Water, 2016, 3(6): 775-787.
    [206]
    Jacobson M D. Dielectric-Covered Ground Reflectors in GPS Multipath Reception—Theory and Measurement[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(3): 396-399.
    [207]
    Larson K M, Gutmann E D, Zavorotny V U, et al. Can We Measure Snow Depth with GPS Receivers?[J]. Geophysical Research Letters, 2009, 36(17): L17502.
    [208]
    Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation: Part I: Formulation and Simulations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6555-6563.
    [209]
    Nievinski F G, Larson K M. Inverse Modeling of GPS Multipath for Snow Depth Estimation: Part II: Application and Validation[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(10): 6564-6573.
    [210]
    McCreight J L, Small E E, Larson K M. Snow Depth, Density, and SWE Estimates Derived from GPS Reflection Data: Validation in the Western U. S[J]. Water Resources Research, 2014, 50(8): 6892-6909.
    [211]
    王佳彤, 胡羽丰, 李振洪, 等. 利用GPS-IR技术快速估计雪水当量[J]. 武汉大学学报(信息科学版), 2021, 46(11): 1666-1676.

    Wang Jiatong, Hu Yufeng, Li Zhenhong, et al. Rapid Estimation of Snow Water Equivalent Using GPS-IR Observations[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1666-1676.
    [212]
    Zhang Z Y, Guo F, Zhang X H. Triple-Frequency Multi-GNSS Reflectometry Snow Depth Retrieval by Using Clustering and Normalization Algorithm to Compensate Terrain Variation[J]. GPS Solutions, 2020, 24(2): 52.
    [213]
    Wang J W, Yuan Q Q, Shen H F, et al. Estimating Snow Depth by Combining Satellite Data and Ground-Based Observations over Alaska: A Deep Learning Approach[J]. Journal of Hydrology, 2020, 585: 124828.
    [214]
    Larson K M, Small E E, Gutmann E, et al. Using GPS Multipath to Measure Soil Moisture Fluctuations: Initial Results[J]. GPS Solutions, 2008, 12(3): 173-177.
    [215]
    Larson K M, Small E E, Gutmann E D, et al. Use of GPS Receivers as a Soil Moisture Network for Water Cycle Studies[J]. Geophysical Research Letters, 2008, 35(24): L24405.
    [216]
    Chew C C, Small E E, Larson K M, et al. Effects of Near-Surface Soil Moisture on GPS SNR Data: Development of a Retrieval Algorithm for Soil Moisture[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(1): 537-543.
    [217]
    Small E E, Larson K M, Chew C C, et al. Validation of GPS-IR Soil Moisture Retrievals: Comparison of Different Algorithms to Remove Vegetation Effects[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4759-4770.
    [218]
    Edokossi K, Calabia A, Jin S G, et al. GNSS-Reflectometry and Remote Sensing of Soil Moisture: A Review of Measurement Techniques, Methods, and Applications[J]. Remote Sensing, 2020, 12(4): 614.
    [219]
    Small E E, Larson K M, Braun J J. Sensing Vegetation Growth with Reflected GPS Signals[J]. Geophysical Research Letters, 2010, 37(12): L12401.
    [220]
    Wan W, Larson K M, Small E E, et al. Using Geodetic GPS Receivers to Measure Vegetation Water Content[J]. GPS Solutions, 2015, 19(2): 237-248.
    [221]
    Larson K M, Small E E. Normalized Microwave Reflection Index: A Vegetation Measurement Derived from GPS Networks[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1501-1511.
    [222]
    Small E E, Larson K M, Smith W K. Normalized Microwave Reflection Index: Validation of Vegetation Water Content Estimates from Montana Grasslands[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(5): 1512-1521.
    [223]
    Evans S G, Small E E, Larson K M. Comparison of Vegetation Phenology in the Western USA Determined from Reflected GPS Microwave Signals and NDVI[J]. International Journal of Remote Sensing, 2014, 35(9): 2996-3017.
    [224]
    Zhang S C, Wang T, Wang L X, et al. Evaluation of GNSS-IR for Retrieving Soil Moisture and Vegetation Growth Characteristics in Wheat Farmland[J]. Journal of Surveying Engineering, 2021, 147(3): 04021009.
    [225]
    Wöppelmann G, Marcos M. Vertical Land Motion as a Key to Understanding Sea Level Change and Variability[J]. Reviews of Geophysics, 2016, 54(1): 64-92.
    [226]
    Larson K M, Löfgren J S, Haas R. Coastal Sea Level Measurements Using a Single Geodetic GPS Receiver[J]. Advances in Space Research, 2013, 51(8): 1301-1310.
    [227]
    Larson K M, Ray R D, Nievinski F G, et al. The Accidental Tide Gauge: A GPS Reflection Case Study from Kachemak Bay, Alaska[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(5): 1200-1204.
    [228]
    Larson K M, Ray R D, Williams S D P. A 10-Year Comparison of Water Levels Measured with a Geodetic GPS Receiver Versus a Conventional Tide Gauge[J]. Journal of Atmospheric and Oceanic Technology, 2017, 34(2): 295-307.
    [229]
    Löfgren J S, Haas R. Sea Level Measurements Using Multi-frequency GPS and GLONASS Observations[J]. EURASIP Journal on Advances in Signal Processing, 2014, 2014(1): 50.
    [230]
    Wang X L, Zhang Q, Zhang S C. Water Levels Measured with SNR Using Wavelet Decomposition and Lomb-Scargle Periodogram[J]. GPS Solutions, 2017, 22(1): 22.
    [231]
    Wang X L, Zhang Q, Zhang S C. Sea Level Estimation from SNR Data of Geodetic Receivers Using Wavelet Analysis[J]. GPS Solutions, 2018, 23(1): 6.
    [232]
    Peng D J, Feng L J, Larson K M, et al. Measuring Coastal Absolute Sea-Level Changes Using GNSS Interferometric Reflectometry[J]. Remote Sensing, 2021, 13(21): 4319.
    [233]
    Peng D J, Hill E M, Li L L, et al. Application of GNSS Interferometric Reflectometry for Detecting Storm Surges[J]. GPS Solutions, 2019, 23(2): 47.
    [234]
    Larson K M, Lay T, Yamazaki Y, et al. Dynamic Sea Level Variation from GNSS: 2020 Shumagin Earthquake Tsunami Resonance and Hurricane Laura[J]. Geophysical Research Letters, 2021, 48(4): e2020GL091378.
    [235]
    Wang X L, He X F, Shi J, et al. Estimating Sea Level, Wind Direction, Significant Wave Height, and Wave Peak Period Using a Geodetic GNSS Receiver[J]. Remote Sensing of Environment, 2022, 279: 113135.
    [236]
    Rogers G, Dragert H. Episodic Tremor and Slip on the Cascadia Subduction Zone: The Chatter of Silent Slip[J]. Science, 2003, 300(5627): 1942-1943.
    [237]
    单新建, 尹昊, 刘晓东, 等. 高频GNSS实时地震学与地震预警研究现状[J]. 地球物理学报, 2019, 62(8): 3043-3052.

    Shan Xinjian, Yin Hao, Liu Xiaodong, et al. High-Rate Real-Time GNSS Seismology and Early Warning of Earthquakes[J]. Chinese Journal of Geophysics, 2019, 62(8): 3043-3052.
    [238]
    Fu Y N, Freymueller J T. Seasonal and Long-Term Vertical Deformation in the Nepal Himalaya Constrained by GPS and GRACE Measurements[J]. Journal of Geophysical Research: Solid Earth, 2012, 117(B3): B03407.
    [239]
    Hao M, Wang Q L, Shen Z K, et al. Present Day Crustal Vertical Movement Inferred from Precise Leveling Data in Eastern Margin of Tibetan Plateau[J]. Tectonophysics, 2014, 632: 281-292.
    [240]
    Riddell A R, King M A, Watson C S. Present-Day Vertical Land Motion of Australia from GPS Observations and Geophysical Models[J]. Journal of Geophysical Research: Solid Earth, 2020, 125(2): e2019JB018034.
  • Related Articles

    [1]SHI Pengcheng, LI Jiayuan, LIU Xinyi, ZHANG Yongjun. Indoor Cylinders Guided LiDAR Global Localization and Loop Closure Detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1088-1099. DOI: 10.13203/j.whugis20220761
    [2]WANG Fuhong, LUAN Mengjie, CHENG Yuxin, ZHU Haoqi, ZHAO Guangyue, ZHANG Wanwei. Smartphone GNSS/MEMS IMU Tightly-Coupled Integration Positioning Method for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1106-1116. DOI: 10.13203/j.whugis20230010
    [3]ZHANG Xiaohong, TAO Xianlu, WANG Yingzhe, LIU Wanke, ZHU Feng. MEMS-Enhanced Smartphone GNSS High-Precision Positioning for Vehicular Navigation in Urban Conditions[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1740-1749. DOI: 10.13203/j.whugis20220611
    [4]LIU Jingbin, ZHAO Zhibo, HU Ningsong, HUANG Gege, GONG Xiaodong, YANG Sheng. Summary and Prospect of Indoor High-Precision Positioning Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 997-1008. DOI: 10.13203/j.whugis20220029
    [5]WANG Yingzhe, TAO Xianlu, ZHU Feng, LIU Wanke, ZHANG Xiaohong, WU Mingkui. High Accuracy Differential Positioning with Smartphone GNSS Raw Measurements[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1941-1950. DOI: 10.13203/j.whugis20210280
    [6]LUO Huan, WENG Duojie, CHEN Wu. An Improved Shadow Matching Method for Smartphone Positioning[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1907-1915. DOI: 10.13203/j.whugis20210275
    [7]LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
    [8]GUO Fei, WU Weiwang, ZHANG Xiaohong, LIU Wanke. Realization and Precision Analysis of Real-Time Precise Point Positioning with Android Smartphones[J]. Geomatics and Information Science of Wuhan University, 2021, 46(7): 1053-1062. DOI: 10.13203/j.whugis20200527
    [9]BI Jingxue, ZHEN Jie, YAO Guobiao, SANG Wengang, NING Yipeng, GUO Qiuying. Improved Finite State Machine Step Detection Algorithm for Smartphone[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200186
    [10]WANG Fuhong, CHENG Yuxin, ZHAO Guangyue, ZHANG Wanwei. Estimate the Mounting Angles of the IMU for the Smartphone-Based Vehicular GNSS/MEMS IMU Integrated System[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230381

Catalog

    Article views (978) PDF downloads (219) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return