ZHANG Wenting, JI Lingyun, CHEN Yuxin, LIU Chuanjin, XU Jing. Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012
Citation: ZHANG Wenting, JI Lingyun, CHEN Yuxin, LIU Chuanjin, XU Jing. Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 391-403. DOI: 10.13203/j.whugis20240012

Analysis of Crustal Deformation of the 2023 Ms 6.2 Jishishan Earthquake in Gansu Province, China

More Information
  • Received Date: January 11, 2024
  • Available Online: April 24, 2024
  • Objectives 

    An earthquake with Ms 6.2 occurred in Jishishan County, Gansu Province on December 18, 2023. The epicenter is located at the Lajishan fault zone, which plays an important role in adjusting regional tectonic deformation. Therefore, it is important to research the crustal deformation of this earthquake.

    Methods 

    We collect coseismic and preseismic Sentinel-1 single look complex images covering the study area, and use differential interferometric synthetic aperture radar (InSAR) and small baseline subset technology to obtain the coseismic and interseismic deformation, respectively. Furthermore, both interseismic InSAR and global navigation satellite system observations are integrated to obtain the high-accuracy and high-resolution three-dimensional deformation field. Subsequently, we invert the slip distribution of the seismogenic fault using the steepest descent method program with the constraint of coseismic deformation. The fault model is constructed based on 3D electrical structure, aftershocks, and InSAR deformation field. In addition, we invert the dextral strike slip rate, dip slip, and locking depth of the seismogenic fault with the constraint of three-dimensional deformation.

    Results 

    Both ascending and descending coseismic InSAR deformation exhibit symmetrical elliptical uplift with a maximum uplift of 8.9 cm along the radar line of sight direction, indicating a thrust earthquake, and there is no obvious surface rupture. The seismogenic fault is mainly characterized by reverse movement and did not rupture the surface, and the peak slip is 0.24 m at the depth of 13.4 km. The geode⁃tic moment is about 1.93×1018 N·m, corresponding to Mw 6.1 event. The dextral strike slip rate and dip slip rate of the seismogenic fault are about 1.9 mm/a and 2.4 mm/a, respectively. The locking depth of the seismogenic fault is about 16.8 km, close the the depth of this earthquake.

    Conclusions 

    The seismogenic fault may be a SWW-dipping hidden fault near the southern segment of the northern Lajishan fault, which thrusts towards the basin direction and parallel to the Lajishan fault. The main seismogenic fault may be southern segment of the SWW-dipping northern Lajishan fault. This main thrust fault and the NEE dipping back-thrust fault jointly uplift when the earthquake occurs. The static Coulomb stress calculation result indicates that the future seismic risk of the southern section of the northern Lajishan fault, the southern end of the southern Lajishan fault, the central and southern sections of the Daotanghe-Linxia fault, and the western end of the northern west Qinling fault cannot be ignored. This earthquake is the result of a regional stress regulation under the the northeast expansion of the Tibet Plateau.

  • [1]
    陈博,宋闯,陈毅,等. 2023年甘肃积石山Ms 6.2地震同震滑坡和建筑物损毁情况应急识别与影响因素研究[J]. 武汉大学学报(信息科学版),2024, DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497

    CHEN Bo, SONG Chuang, CHEN Yi, et al. Emergency Identification and Influencing Factor Analysis of Coseismic Landslides and Building Da-mages Induced by the 2023 Ms 6.2 Jishishan (Gansu, China) Earthquake [J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20230497. doi: 10.13203/J.whugis20230497
    [2]
    杨九元,温扬茂,许才军. InSAR观测揭示的2023年甘肃积石山Ms 6.2地震发震构造[J]. 武汉大学学报(信息科学版),2024, DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501

    YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations [J]. Geomatics and Information Science of Wuhan University, 2024,DOI:10.13203/J.whugis20230501. doi: 10.13203/J.whugis20230501
    [3]
    刘振江,韩炳权,能懿菡,等. InSAR观测约束下的2023年甘肃积石山地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版),2024, DOI:10.13203/J.whugis20240008. doi: 10.13203/J.whugis20240008

    LIU Zhenjiang, HAN Bingquan, Nai Yihan, et al. Source Parameters and Slip Distribution of the 2023 Mw 6.0 Jishishan (Gansu, China) Earthquake Constrained by InSAR Observations [J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20240008. doi: 10.13203/J.whugis20240008
    [4]
    李雨森, 李为乐, 许强, 等. 2023年积石山Ms 6.2地震InSAR同震形变探测与断层滑动分布反演[J]. 成都理工大学学报(自然科学版), 2024, 51(1): 22-32.

    LI Yusen, LI Weile, XU Qiang, et al. Coseismic Deformation and Slip Distribution of the 2023 Ms 6.2 Jishishan Earthquake Revealed by InSAR Observations[J]. Journal of Chengdu University of Technology (Science Technology Edition), 2024, 51(1): 22-32.
    [5]
    方楠,孙凯,黄传超,等.联合InSAR和地震波数据反演甘肃积石山Ms 6.2地震震源时空破裂过程[J]. 武汉大学学报(信息科学版), 2024, DOI:10.13203/J.whugis20240036. doi: 10.13203/J.whugis20240036

    FANG Nan, SUN Kai, HUANG Chuanchao, et al. Joint Inversion of Inversion of InSAR and Seismic Data for the Kinematic Rupture Process of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake [J]. Geomatics and Information Science of Wuhan University, 2024, DOI:10.13203/J.whugis20240036. doi: 10.13203/J.whugis20240036
    [6]
    TANG X W, GUO R M, ZHANG Y J, et al. Rapid Rupture Characterization for the 2023 Ms 6.2 Jishi-shan Earthquake[J]. Earthquake Research Advances, 2024, 4(2): 100287.
    [7]
    袁道阳, 张培震, 雷中生, 等. 青海拉脊山断裂带新活动特征的初步研究[J]. 中国地震, 2005, 21(1): 93-102.

    YUAN Daoyang, ZHANG Peizhen, LEI Zhong-sheng, et al. A Preliminary Study on the New Activity Features of the Lajishan Mountain Fault Zone in Qinghai Province[J]. Earthquake Research in China, 2005, 21(1): 93-102.
    [8]
    张波. 西秦岭北缘断裂西段与拉脊山断裂新活动特征研究[D]. 兰州: 中国地震局兰州地震研究所, 2012.

    ZHANG Bo. The Study of New Activities on Western Segment of Northern Margin of Western Qinling Fault and Laji Shan Fault[D]. Lanzhou:Lanzhou Institute of Seismology, China Earthquake Administration, 2012.
    [9]
    ZHAO L Q, ZHAN Y, WANG Q L, et al. 3D Electrical Structure and Crustal Deformation of the Lajishan Tectonic Belt, Northeastern Margin of the Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2022, 224: 104953.
    [10]
    YUAN D Y, GE W P, CHEN Z W, et al. The Growth of Northeastern Tibet and Its Relevance to Large⁃Scale Continental Geodynamics: A Review of Recent Studies[J]. Tectonics, 2013, 32(5): 1358-1370.
    [11]
    谢虹, 雷中生, 袁道阳, 等. 1944年青海乐都瞿昙寺地震考证[J]. 内陆地震, 2014, 28(4): 305-311.

    XIE Hong, LEI Zhongsheng, YUAN Daoyang, et al. Reasearch on Historical Data of Qutan Temple Earthquake in 1944 in Qinghai Province[J]. Inland Earthquake, 2014, 28(4): 305-311.
    [12]
    HAO M, WANG Q L, SHEN Z K, et al. Present Day Crustal Vertical Movement Inferred from Precise Leveling Data in Eastern Margin of Tibetan Plateau[J]. Tectonophysics, 2014, 632: 281-292.
    [13]
    周琳, 王庆良, 李长军, 等. 基于GPS和水准资料的拉脊山断裂带西段地壳形变研究[J]. 大地测量与地球动力学, 2016, 36(12): 1056-1059.

    ZHOU Lin, WANG Qingliang, LI Zhangjun, et al. The Study of Crustal Deformation on Western End of Lajishan Fault Based on GPS and Leveling Data[J]. Journal of Geodesy and Geodynamics, 2016, 36(12): 1056-1059.
    [14]
    ZHUANG W Q, CUI D X, HAO M, et al. Geodetic Constraints on Contemporary Three-Dimensional Crustal Deformation in the Laji Shan⁃Jishi Shan Tectonic Belt[J]. Geodesy and Geodynamics, 2023, 14(6): 589-596.
    [15]
    ZHANG W T, JI L Y, ZHU L Y, et al. Current Slip and Strain Rate Distribution Along the Ganzi-Yushu-Xianshuihe Fault System Based on InSAR and GPS Observations[J]. Frontiers in Earth Science, 2022, 10: 821761.
    [16]
    ZHAO Q, JIANG F Y, ZHU L Y, et al. Synthetic Aperture Radar Interferometry–Based Coseismic Deformation and Slip Distribution of the 2022 Menyuan Ms 6.9 Earthquake in Qinghai, China[J]. Geodesy and Geodynamics, 2023, 14(6): 541-550.
    [17]
    季灵运, 刘传金, 徐晶, 等. 九寨沟Ms 7.0地震的InSAR观测及发震构造分析[J]. 地球物理学报, 2017, 60(10): 4069-4082.

    JI Lingyun, LIU Chuanjin, XU Jing, et al. InSAR Observation and Inversion of the Seismogenic Fault for the 2017 Jiuzhaigou Ms 7.0 Earthquake in China[J]. Chinese Journal of Geophysics, 2017, 60(10): 4069-4082.
    [18]
    GUO R M, LI L N, ZHANG W T, et al. Kinematic Slip Evolution During the 2022 Ms 6.8 Luding, China, Earthquake: Compatible with the Preseismic Locked Patch[J]. Geophysical Research Letters, 2023, 50(5): 1-10.
    [19]
    WERNER C, WEGMLLER U, STROZZI T, et al. Gamma SAR and Interferometric Processing Software[C]// ERS-Envisat Symposium, Gothenburg, Sweden, 2000.
    [20]
    YAGÜE-MARTÍNEZ N, PRATS-IRAOLA P, RODRÍGUEZ GONZÁLEZ F, et al. Interferometric Processing of Sentinel-1 TOPS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(4): 2220-2234.
    [21]
    The European Space Agency. Copernicus Global Digital Elevation Model(COP-DEM) [EB/OL]. [2023-12-20] https://spacedata.copernicus.eu/collections/copernicus-digital-elevation-model.
    [22]
    GOLDSTEIN R M, WERNER C L. Radar Interferogram Filtering for Geophysical Applications[J]. Geophysical Research Letters, 1998, 25(21): 4035-4038.
    [23]
    COSTANTINI M. A Novel Phase Unwrapping Method Based on Network Programming[J]. IEEE Transactions on Geoscience and Remote Sensing, 1998, 36(3): 813-821.
    [24]
    FIALKO Y, SANDWELL D, SIMONS M, et al. Three-Dimensional Deformation Caused by the Bam, Iran, Earthquake and the Origin of Shallow Slip Deficit[J]. Nature, 2005, 435: 295-299.
    [25]
    YU C, LI Z H, PENNA N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research (Solid Earth), 2018, 123(10): 9202-9222.
    [26]
    LIANG S M, GAN W J, SHEN C Z, et al. Three-Dimensional Velocity Field of Present-Day Crustal Motion of the Tibetan Plateau Derived from GPS Measurements[J]. Journal of Geophysical Research: Solid Earth, 2013, 118(10): 5722-5732.
    [27]
    WANG M, SHEN Z K. Present-Day Crustal Deformation of Continental China Derived from GPS and Its Tectonic Implications[J]. Journal of Geophysical Research (Solid Earth), 2020, 125(2): e2019JB018774.
    [28]
    庄文泉, 李君, 郝明, 等. 利用加密GNSS数据和震源机制解分析川滇块体南部现今地壳活动特性[J]. 大地测量与地球动力学, 2021, 41(7): 732-738.

    ZHUANG Wenquan, LI Jun, HAO Ming, et al. Study on the Characteristics of Current Crustal Activity in the Southern Sichuan-Yunnan Block Using Dense GNSS Data and Focal Mechanism Solution[J]. Journal of Geodesy and Geodynamics, 2021, 41(7): 732-738.
    [29]
    LIU C J, JI L Y, ZHU L Y, et al. Present-Day Three-Dimensional Deformation Across the Ordos Block, China, Derived from InSAR, GPS, and Leveling Observations[J]. Remote Sensing, 2023, 15(11): 2890.
    [30]
    WANG H, WRIGHT T J. Satellite Geodetic Ima-ging Reveals Internal Deformation of Western Tibet[J]. Geophysical Research Letters, 2012, 39(7): 1-5.
    [31]
    WANG R J, DIAO F, HOECHNER A. SDM —A Geodetic Inversion Code Incorporating with Layered Crust Structure and Curved Fault Geometry[C]// General Assembly European Geosciences Union, Vienna, Austria,2013.
    [32]
    刘琦, 闻学泽, 邵志刚. 基于GPS、水准和强震动观测资料联合反演2013年芦山7.0级地震同震滑动分布[J]. 地球物理学报, 2016, 59(6): 2113-2125.

    LIU Qi, WEN Xueze, SHAO Zhigang. Joint Inversion for Coseismic Slip of the 2013 Ms 7.0 Lushan Earthquake from GPS, Leveling and Strong Motion Observations[J]. Chinese Journal of Geophysics, 2016, 59(6): 2113-2125.
    [33]
    COOLEY M A, PRICE R A, DIXON J M, et al. Along-Strike Variations and Internal Details of Chevron-Style, Flexural-Slip Thrust-Propagation Folds Within the Southern Livingstone Range Anticlinorium, a Paleohydrocarbon Reservoir in Southern Alberta Foothills, Canada[J]. AAPG Bulletin, 2011, 95(11): 1821-1849.
    [34]
    ZHU L Y, JI L Y, LIU C J, et al. The 8 January 2022, Menyuan Earthquake in Qinghai, China: A Representative Event in the Qilian-Haiyuan Fault Zone Observed Using Sentinel-1 SAR Images[J]. Remote Sensing, 2022, 14(23): 6078.
    [35]
    JI L Y, ZHANG W T, LIU C J, et al. Characteri-zing Interseismic Deformation of the Xianshuihe Fault, Eastern Tibetan Plateau, Using Sentinel-1 SAR Images[J]. Advances in Space Research, 2020, 66(2): 378-394.
    [36]
    ZHU L Y, JI L Y, LIU C J. Interseismic Slip Rate and Locking Along the Maqin–Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, Based on Sentinel-1 Images[J]. Journal of Asian Earth Sciences, 2021, 211: 104703.
    [37]
    邹镇宇, 江在森, 武艳强, 等. 针对一般倾角的走滑/倾滑位移理论公式的改进[J]. 大地测量与地球动力学, 2015, 35(3): 460-463.

    ZOU Zhenyu, JIANG Zaisen, WU Yanqiang, et al. Improvements for the Strike/Dip-Slip Displacement Theory Formula of General Dip Fault[J]. Journal of Geodesy and Geodynamics, 2015, 35(3): 460-463.
    [38]
    SAVAGE J C, BURFORD R O. Geodetic Determination of Relative Plate Motion in Central California[J]. Journal of Geophysical Research, 1973, 78(5): 832-845.
    [39]
    FREUND L B, BARNETT D M. A Two-Dimensional Analysis of Surface Deformation Due to Dip-Slip Faulting [J]. Bulletin of the Seismological Society of America, 1976, 66(3): 667-675.
    [40]
    赵静, 牛安福, 李强, 等. 陇西块体周边断层闭锁程度与滑动亏损特征研究[J]. 地震研究, 2016, 39(3): 351-358.

    ZHAO Jing, NIU Anfu, LI Qiang, et al. Study on Dynamic Characteristics of Fault Locking and Fault Slip Deficit in the Faults Around the Longxi Block[J]. Journal of Seismological Research, 2016, 39(3): 351-358.
    [41]
    刘小凤, 梅秀苹, 冯建刚, 等. 青藏高原北部地区地震基本活动状态定量评价[J]. 西北地震学报, 2011, 33(2): 130-136.

    LIU Xiaofeng, MEI Xiuping, FENG Jiangang, et al. Quantitative Estimating Basic State of Seismicity in Northern Region of Qinghai-Xizang Plateau[J]. Northwestern Seismological Journal, 2011, 33(2): 130-136.
    [42]
    WANG R J, LORENZO-MARTÍN F, ROTH F. PSGRN/PSCMP—A New Code for Calculating Co- and Post-Seismic Deformation, Geoid and Gravity Changes Based on the Viscoelastic-Gravitational Dislocation Theory[J]. Computers Geosciences, 2006, 32(4): 527-541.
    [43]
    石富强, 熊熊, 王朋涛, 等. 2016年以来门源2次6级地震的应力触发及其对祁连—海原断裂带地震危险性的指示[J]. 地球物理学报, 2023, 66(8): 3230-3241.

    SHI Fuqiang, XIONG Xiong, WANG Pengtao, et al. Stress Interaction Between the Two M>6 Earthquake Since 2016 and Its Implication on the Seismic Hazard Along the Qilian-Haiyuan Fault Zone[J]. Chinese Journal of Geophysics, 2023, 66(8): 3230-3241.
    [44]
    汤大委, 葛伟鹏, 袁道阳, 等. 青藏高原北部历史强震对2022年门源Ms 6.9地震及后续地震库仑应力触发作用[J]. 地球物理学报, 2023, 66(7): 2772-2795.

    TANG Dawei, GE Weipeng, YUAN Daoyang, et al. Triggering Effect of Historical Earthquakes in the Northern Tibetan Plateau on the Coulomb Stress of the 2022 Menyuan Ms 6.9 Earthquake and Subsequent Earthquakes[J]. Chinese Journal of Geophysics, 2023, 66(7): 2772-2795.
    [45]
    徐晶, 邵志刚, 马宏生, 等. 汶川8.0级地震和芦山7.0级地震对周边断层的影响[J]. 地震, 2014, 34(4): 40-49.

    XU Jing, SHAO Zhigang, MA Hongsheng, et al. Impact of the 2008 Wenchuan 8.0 and the 2013 Lushan 7.0 Earthquakes Along the Longmenshan Fault Zone on Surrounding Faults[J]. Earthquake, 2014, 34(4): 40-49.
    [46]
    岳冲, 屈春燕, 牛安福, 等. 玛多Ms 7.4地震对周边断层的应力影响分析[J]. 地震地质, 2021, 43(5): 1041-1059.

    YUE Chong, QU Chunyan, NIU Anfu, et al. Analysis of Stress Influence of Qinghai Maduo Ms 7.4 Earthquake on Surrounding Faults[J]. Seismology and Geology, 2021, 43(5): 1041-1059.
    [47]
    程佳, 姚生海, 刘杰, 等. 2017年九寨沟地震所受历史地震黏弹性库仑应力作用及其后续对周边断层地震危险性的影响[J]. 地球物理学报, 2018, 61(5): 2133-2151.

    CHENG Jia, YAO Shenghai, LIU Jie, et al. Visoelastic Coulomb Stress of Historical Earthquakes on the 2017 Jiuzhaigou Earthquake and the Subsequent Influence on the Seismic Hazards of Adjacent Faults[J]. Chinese Journal of Geophysics, 2018, 61(5): 2133-2151.
    [48]
    HARRIS R A, SIMPSON R W. Suppression of Large Earthquakes by Stress Shadows: A Comparison of Coulomb and Rate-and-State Failure[J]. Journal of Geophysical Research: Solid Earth, 1998, 103(B10): 24439-24451.
  • Related Articles

    [1]LIU Shuo, ZHANG Lei, LI Jian. A Modified Wide Lane Bootstrapping Ambiguity Resolution Algorithm[J]. Geomatics and Information Science of Wuhan University, 2018, 43(4): 637-642. DOI: 10.13203/j.whugis20150462
    [2]Wang Bing, Sui Lifen, Wang Wei, Ma Cheng. Rapid Resolution of Integer Ambiguity in Integrated GPS/Gyro Attitude Determination[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 128-133.
    [3]FENG Wei, HUANG Dingfa, YAN Li, LI Meng. GNSS Dual-Frequency Integer Relationship Constrained Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 945-948.
    [4]QIU Lei, HUA Xianghong, CAI Hua, WU Yue. Direct Calculation of Ambiguity Resolution in GPS Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 97-99.
    [5]WANG Xinzhou, HUA Xianghong, QIU Lei. A New Method for Integer Ambiguity Resolution in GPS Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 24-26.
    [6]LIU Zhimin, LIU Jingnan, JIANG Weiping, LI Tao. Ambiguity Resolution of GPS Short-Baseline Using Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2006, 31(7): 607-609.
    [7]LOU Yidong, LI Zhenghang, ZHANG Xiaohong. A Method of Short Baseline Solution without Cycle Slip Detection and Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2005, 30(11): 995-998.
    [8]YANG Rengui, OU Jikun, WANG Zhenjie ZHAO Chunmei, . Searching Integer Ambiguities in Single Frequency Single Epoch by Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3): 251-254.
    [9]P. J. G. Teunissen. A New Class of GNSS Ambiguity Estimators[J]. Geomatics and Information Science of Wuhan University, 2004, 29(9): 757-762.
    [10]Chen Yongqi. An Approach to Validate the Resolved Ambiguities in GPS Rapid Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 342-345.

Catalog

    Article views (325) PDF downloads (109) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return