HUANG Chenhu, ZHAI Guojun. Tidal Numerical Modeling by the Optimized Boundary Conditions in Haizhou Bay of the Yellow Sea[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1785-1795. DOI: 10.13203/j.whugis20210658
Citation: HUANG Chenhu, ZHAI Guojun. Tidal Numerical Modeling by the Optimized Boundary Conditions in Haizhou Bay of the Yellow Sea[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1785-1795. DOI: 10.13203/j.whugis20210658

Tidal Numerical Modeling by the Optimized Boundary Conditions in Haizhou Bay of the Yellow Sea

Funds: 

The National Natural Science Foundation of China 41974005

The National Natural Science Foundation of China 41876103

The National Natural Science Foundation of China 41804011

More Information
  • Author Bio:

    HUANG Chenhu, PhD candidate, senior engineer, specializes in bathymetry sounding data processing and tide analysis. E-mail: hchhch-1997@163.com

  • Corresponding author:

    ZHAI Guojun, PhD, professor. E-mail: zhaigj@163.com

  • Received Date: March 02, 2022
  • Available Online: March 18, 2022
  • Published Date: October 04, 2022
  •   Objectives  Due to the joint constraints of boundary conditions, including seabed topography, driven water level at open boundary (DWLOB) and bottom friction coefficient (BFC), the accuracy of the tidal numerical modeling in coastal and offshore waters is relatively low.
      Methods  This paper intends to synchronously optimize the multiple boundary conditions, including seabed topography, DWLOB, and BFC, to improve the accuracy of the tidal numerical modeling in China's coastal and offshore waters for the hydrographic surveying and mapping. This paper simulates the tidal model of Haizhou Bay of the Yellow Sea in China, using a two-dimensional tide numerical model (2D-MIKE21) and based on the synchronously optimized boundary conditions. The water depth with higher resolution and accuracy than the charted depth is used as the seabed topography. The DWLOB is calculated from 12 tidal constituents of the regional tidal model of China seas(CST1). The calculation of the BFC takes into account the spatial variation of water depth.
      Results  For validation, we compare the simulated model with the 1-year tide tables from 6 tide gauges in Haizhou Bay and the CST1 model at 24 randomly selected points, and get the total root sum squares of the 12 tidal constituents of 5.52 cm and 7.10 cm, respectively. The simulated tide model and CST1 are also compared with the 1-month observations at two tide gauges in Haizhou Bay, and the former has a smaller mean square error than the latter.
      Conclusions  The proposed strategy provides a new method for tidal numerical modeling in coastal and offshore waters. This study also shows that it is feasible to obtain the astro-meteorological constituent Sa by tidal numerical modeling. It should be noted that, the wind effect is also not considered in this study due to its strong randomness and the difficulty in obtaining data for one year. We can use the simulated water level heights and the short-term wind velocity and direction as the better open boundary and initial conditions to carry out the short-term tidal modeling in coastal and offshore waters, which can generate the residual water level or storm surge.
  • [1]
    柯灝, 吴敬文, 李斐, 等. 基于潮波运动三维数值模拟的海洋连续深度基准面建立方法研究[J]. 地球物理学报, 2018, 61(6): 2220-2226 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806005.htm

    Ke Hao, Wu Jingwen, Li Fei, et al. Study on the Establishment of the Oceanic Continuous Chart Datum Based on Three-Dimensional Numerical Simulation of Tidal Wave Motion[J]. Chinese Journal of Geophysics, 2018, 61(6): 2220-2226 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201806005.htm
    [2]
    付延光. 南海海域无缝垂直基准构建研究[D]. 青岛: 山东科技大学, 2019

    Fu Yanguang. Research on the Construction of Seamless Vertical Datum in the South China Sea[D]. Qingdao: Shandong University of Science and Technology, 2019
    [3]
    Stammer D, Ray R D, Andersen O B, et al. Accuracy Assessment of Global Barotropic Ocean Tide Models[J]. Reviews of Geophysics, 2014, 52(3): 243-282 doi: 10.1002/2014RG000450
    [4]
    暴景阳, 许军. 卫星测高数据的潮汐提取与建模应用[M]. 北京: 测绘出版社, 2013

    Bao Jingyang, Xu Jun. Tide Analysis from Altimeter Data and the Establishment and Application of Tide Model[M]. Beijing: SinoMaps Press, 2013
    [5]
    吴自库, 王丽娅, 吕咸青, 等. 北部湾潮汐的伴随同化数值模拟[J]. 海洋学报, 2003, 25(2): 128-135 https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200302014.htm

    Wu Ziku, Wang Liya, Lü Xianqing, et al. A Numerical Model of Tides in the Beibu Gulf by Adjoint Method[J]. Acta Oceanologica Sinica, 2003, 25(2): 128-135 https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC200302014.htm
    [6]
    朱学明, 鲍献文, 宋德海, 等. 渤、黄、东海潮汐、潮流的数值模拟与研究[J]. 海洋与湖沼, 2012, 43(6): 1103-1113 https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201206012.htm

    Zhu Xueming, Bao Xianwen, Song Dehai, et al. Numerical Study on the Tides and Tidal Currents in Bohai Sea, Yellow Sea and East China Sea[J]. Oceanologia et Limnologia Sinica, 2012, 43(6): 1103-1113 https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201206012.htm
    [7]
    吴頔, 方国洪, 崔欣梅, 等. 泰国湾及邻近海域潮汐潮流的数值模拟[J]. 海洋学报, 2015, 37(1): 11-20 https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201501002.htm

    Wu Di, Fang Guohong, Cui Xinmei, et al. Numerical Simulation of Tides and Tidal Currents in the Gulf of Thailand and Its Adjacent Area[J]. Acta Oceanologica Sinica, 2015, 37(1): 11-20 https://www.cnki.com.cn/Article/CJFDTOTAL-SEAC201501002.htm
    [8]
    林美华, 方国洪. 中国海标准经纬度水深和基准面数据表[M]. 青岛: 中国科学院海洋研究所, 1991

    Lin Meihua, Fang Guohong. Standard Longitude and Latitude Water Depth and Datum Level Data of the Sea of China[M]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 1991
    [9]
    李帅, 郭俊如, 姜晓轶, 等. 海洋水文气象多时空尺度资料来源分析[J]. 海洋通报, 2020, 39(1): 24-39 https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB202001003.htm

    Li Shuai, Guo Junru, Jiang Xiaoyi, et al. Sources and Analysis of Multi-Temporal-Spatial Scale Marine Hydrometeorology Data[J]. Marine Science Bulletin, 2020, 39(1): 24-39 https://www.cnki.com.cn/Article/CJFDTOTAL-HUTB202001003.htm
    [10]
    滕飞, 方国洪, 魏泽勋, 等. Chezy型和广义Manning型摩擦关系在渤、黄、东海陆架潮汐模拟中的应用[J]. 海洋与湖沼, 2016, 47(4): 696-705 https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201604002.htm

    Teng Fei, Fang Guohong, Wei Zexun, et al. Tidal Simulation in Chezy-Type and Generalized Manning-Type Friction for Chinese Eastern Shelf Seas[J]. Oceanologia et Limnologia Sinica, 2016, 47(4): 696-705 https://www.cnki.com.cn/Article/CJFDTOTAL-HYFZ201604002.htm
    [11]
    张胜凯, 雷锦韬, 李斐. 全球海潮模型研究进展[J]. 地球科学进展, 2015, 30(5): 579-588 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201505008.htm

    Zhang Shengkai, Lei Jintao, Li Fei. Advances in Global Ocean Tide Models[J]. Advances in Earth Science, 2015, 30(5): 579-588 https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201505008.htm
    [12]
    SathishKumar S, Balaji R. Effect of Bottom Friction on Tidal Hydrodynamics Along Gulf of Khambhat, India[J]. Estuarine, Coastal and Shelf Science, 2015, 154: 129-136
    [13]
    Sohrabi A M, Ardalan A A, Karimi R. Hydrodynamic Tidal Model of the Persian Gulf Based on Spatially Variable Bed Friction Coefficient[J]. Marine Geodesy, 2019, 42(1): 25-45
    [14]
    Sindhu B, Suresh I, Unnikrishnan A S, et al. Im proved Bathymetric Datasets for the Shallow Water Regions in the Indian Ocean[J]. Journal of Earth System Science, 2007, 116(3): 261-274
    [15]
    Sindhu B, Unnikrishnan A S. Characteristics of Tides in the Bay of Bengal[J]. Marine Geodesy, 2013, 36(4): 377-407
    [16]
    Krien Y, Mayet C, Testut L, et al. Improved Bathymetric Dataset and Tidal Model for the Northern Bay of Bengal[J]. Marine Geodesy, 2016, 39(6): 422-438
    [17]
    付延光, 周兴华, 周东旭, 等. 利用验潮站资料的中国近岸海潮模型精度评估[J]. 测绘科学, 2017, 42(8): 28-32 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201708006.htm

    Fu Yanguang, Zhou Xinghua, Zhou Dongxu, et al. Accuracy Analysis of Ocean Tidal Model over China Seas Based on the Gauge Data[J]. Science of Surveying and Mapping, 2017, 42(8): 28-32 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201708006.htm
    [18]
    Xu J, Bao J Y, Zhang C Y, et al. Tide Model CST1 of China and Its Application for the Water Level Reducer of Bathymetric Data[J]. Marine Geodesy, 2017, 40(2/3): 74-86
    [19]
    Lyu H H, Zhu J R. Impact of the Bottom Drag Coefficient on Saltwater Intrusion in the Extremely Shallow Estuary[J]. Journal of Hydrology, 2018, 557: 838-850
    [20]
    Guan M L, Li Q Q, Zhu J S, et al. A Method of Establishing an Instantaneous Water Level Model for Tide Correction[J]. Ocean Engineering, 2019, 171: 324-331
    [21]
    蔡锋, 曹超, 周兴华. 中国近海海洋-海底地形地貌[M]. 北京: 海洋出版社, 2013

    Cai Feng, Cao Chao, Zhou Xinghua. China s Offshore Ocean-Seabed Topography[M]. Beijing: Ocean Press, 2013
    [22]
    贾俊涛, 谭冀川, 陈长林, 等. 海底地形水深三角网重采样技术研究[J]. 海洋测绘, 2017, 37(3): 63-65 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201703016.htm

    Jia Juntao, Tan Jichuan, Chen Changlin, et al. Vertex Resampling of Sounding Triangle[J]. Hydrographic Surveying and Charting, 2017, 37(3): 63-65 https://www.cnki.com.cn/Article/CJFDTOTAL-HYCH201703016.htm
    [23]
    Piccioni G, Dettmering D, Schwatke C, et al. Design and Regional Assessment of an Empirical Tidal Model Based on FES2014 and Coastal Altimetry[J]. Advances in Space Research, 2021, 68(2): 1013-1022
    [24]
    Matsumoto K, Takanezawa T, Ooe M. Ocean Tide Models Developed by Assimilating TOPEX/ POSEIDON Altimeter Data into Hydrodynamical Model: A Global Model and a Regional Model Around Japan[J]. Journal of Oceanography, 2000, 56(5): 567-581
  • Related Articles

    [1]WANG Mengqi, LI Bozhao, WANG Zhenli, LIU Songcao, LIAO Cheng, CAI Zhongliang. An Automatic Cartography Framework Integrating Knowledge Graph and Large Language Model[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240266
    [2]ZHU Jun, LAI Jianbo, XIE Yakun, CHEN Peijing, SUN Wenjin. Knowledge-Guided Spatiotemporal Narrative 3D Visualization Method for the Bridge Construction Process[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1650-1660. DOI: 10.13203/j.whugis20230239
    [3]WU Jianhua, WEI Ning, ZHANG Yongsheng, ZHANG Yufei, CHEN Yuanyuan, TU Haowen, QIN Kun, LIN Hui. Linguistic-Spatial Intelligence: Opportunities and Challenges of Interdisciplinary Innovation[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240351
    [4]ZHENG Yu. The Knowledge System for Intelligent Cities[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 1-16. DOI: 10.13203/j.whugis20220366
    [5]ZHU Jun, FU Lin, LI Weilian, ZHENG Quanhong, HU Ya, GUO Yukun, HUANG Pengcheng, YANG Li. Knowledge-Guided Dynamic Representation Method of Landslide Disaster Scene[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1255-1262. DOI: 10.13203/j.whugis20200027
    [6]JIANG Jingchao, YU Jie, QIN Chengzhi, LIU Junzhi, LI Runkui, ZHU Liangjun, ZHU Axing. A Knowledge-driven Method for Intelligent Setting of Parameters in Hydrological Modeling[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 525-530. DOI: 10.13203/j.whugis20150044
    [7]ZHU Qing, MIAO Shuangxi, DING Yulin, QI Hua, HE Xiaobo, CAO Zhenyu. Knowledge-guided Gross Errors Detection and Elimination Approach of Landslide Monitoring Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 496-502. DOI: 10.13203/j.whugis20150125
    [8]ZHONG Heping, TIAN Zhen, WU Haoran, ZHANG Sen, TANG Jinsong. Parallel Quality-Guided Phase Unwrapping Algorithm in Shared Memory Environment[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 130-135. DOI: 10.13203/j.whugis20140728
    [9]ZHONG Heping, ZHANG Sen, TIAN Zhen, TANG Jinsong. A Fast Quality-guided Phase Unwrapping Algorithmin Heterogeneous Environment[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 756-760. DOI: 10.13203/j.whugis20130518
    [10]HE Yong, SHA Zongyao. Structure of Decision Support System Based on Intelligent Object[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 116-119.
  • Cited by

    Periodical cited type(9)

    1. 任加新,刘万增,陈军,张蓝,陶远,朱秀丽,赵婷婷,李然,翟曦,王海清,周晓光,侯东阳,王勇. 知识引导的碎片化栅格地形图比例尺智能识别. 测绘学报. 2024(01): 146-157 .
    2. 何光强,刘云刚. 总体国家安全观视角下的国家版图安全及其治理. 社会主义研究. 2024(01): 156-164+172 .
    3. 杜清运,况路路,任福,刘江涛,冯昶,陈卓宁,张浡聪,郑康,李智程. 自动驾驶高精度地图特征分析及发展展望. 地球信息科学学报. 2024(01): 15-24 .
    4. 李必军,郭圆,周剑,唐有辰,董全华,李治江. 智能驾驶高精地图发展与展望. 武汉大学学报(信息科学版). 2024(04): 491-505 .
    5. 吴佳桐,狄琳,黄龙. 智能驾驶高精地图数智化审查研究. 测绘通报. 2024(10): 174-178 .
    6. 陈军,王艳慧,武昊,刘万增. 时空信息赋能高质量发展的基本问题与发展方向. 时空信息学报. 2023(01): 1-11 .
    7. 纪银晓. 科技期刊编辑加工过程中常见的“问题地图”及预防措施. 出版与印刷. 2023(04): 97-103 .
    8. 谢富鑫,郭圆,周剑,郭思雨,李必军. 智能汽车高精地图众源更新研究现状. 人工智能. 2023(05): 48-54 .
    9. 蒋树芳,何书金,段宗奇,黄光玉. 一种基于“面-线-点”要素的期刊地图内容有序核查方法. 中国科技期刊研究. 2023(11): 1418-1426 .

    Other cited types(1)

Catalog

    Article views (890) PDF downloads (52) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return