Citation: | LIU Zebang, CHEN Luo, YANG Anran, MA Mengyu, CAO Jingzhi. Efficient Indexing Technology for Real‐Time Visualization of Large‐Scale Geographic Vector Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1512-1521. DOI: 10.13203/j.whugis20210445 |
Real-time visualization of large-scale geographic vector data is a hot and difficult topic in the field of geographic information science. In the current research, display-driven computing method (DisDC) is insensitive to data scale and can support real-time visualization of large-scale geographic vector data. However, with the growth of data scale, the index construction time and the index size of the DisDC visualization method greatly increase in data preprocessing, which greatly affects the practicability of the method.
To fill the gap, a fast indexing technique based on DisDC is proposed. Rapid construction of tile-quadtree index (TQ-tree) based on quadtree recursive division of global geographic range in the pre-processing stage, in TQ-tree, the alignment of nodes and tiles/pixels are realized by encoding. In the visualization stage, according to the process of DisDC, the pixel is taken as the calculation unit to determine whether the corresponding node of the pixel in TQ-tree exists, and the pixel value can be quickly calculated to generate the final display effect.
Experimental results show that the proposed technique has shorter index construction time and smaller index size, and the visualization efficiency outperforms the existing DisDC visualization methods.
The Method can support real-time visualization of multi-billion vector elements more quickly.
[1] |
姚晓闯. 矢量大数据管理关键技术研究[D]. 北京: 中国农业大学, 2017.
Yao Xiaochuang. Research on Key Technologies of Vector Big Data Management[D]. Beijing: China Agricultural University, 2017
|
[2] |
Tong X, Ben J, Liu Y, et al. Modeling and Expression of Vector Data in the Hexagonal Discrete Global Grid System[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, 4: 15-25.
|
[3] |
MacEachren A M, Gahegan M, Pike W, et al. Geovisualization for Knowledge Construction and Decision Support[J]. IEEE Computer Graphics and Applications, 2004, 24(1): 13-17. doi: 10.1109/MCG.2004.1255801
|
[4] |
Ma M, Wu Y, Ouyang X, et al. HiVision: Rapid Visualization of Large-Scale Spatial Vector Data[J]. Computers & Geosciences, 2021, 147: 104665.
|
[5] |
苟丽美, 朱美正, 李艳明. RESTful风格地图瓦片服务的研究[J]. 计算机工程与设计, 2012, 33(9): 3609-3616. doi: 10.3969/j.issn.1000-7024.2012.09.069
Gou Limei, Zhu Meizheng, Li Yanming. Study on Web Map Tile Service Based on RESTful[J]. Computer Engineering and Design, 2012, 33(9): 3609-3616 doi: 10.3969/j.issn.1000-7024.2012.09.069
|
[6] |
殷福忠, 孙立民. 基于瓦片金字塔技术的地图发布平台开发研究[J]. 测绘与空间地理信息, 2010, 33(5): 16-17. doi: 10.3969/j.issn.1672-5867.2010.05.006
Yin Fuzhong, Sun Limin. The Research of Map Publishing Platform Development Based on the Tile Pyramid Technology[J]. Geomatics & Spatial Information Technology, 2010, 33(5): 16-17 doi: 10.3969/j.issn.1672-5867.2010.05.006
|
[7] |
Guo M, Guan Q, Xie Z, et al. A Spatially Adaptive Decomposition Approach for Parallel Vector Data Visualization of Polylines and Polygons[J]. International Journal of Geographical Information Science, 2015, 29(8): 1419-1440. doi: 10.1080/13658816.2015.1032294
|
[8] |
Gao J, Wang C, Li L, et al. A Parallel Multiresolution Volume Rendering Algorithm for Large Data Visualization[J]. Parallel Computing, 2005, 31(2): 185-204. doi: 10.1016/j.parco.2005.02.005
|
[9] |
Hughes J N, Annex A, Eichelberger C N, et al. GeoMesa: A Distributed Architecture for Spatio-temporal Fusion[C]// Geospatial Informatics, Fusion, and Motion Video Analytics V, Baltimore, Maryland, USA, 2015.
|
[10] |
Eldawy A, Mokbel M F, Alharthi S, et al. SHAHED: A MapReduce-Based System for Querying and Visualizing Spatio-Temporal Satellite Data[C]//The 31st International Conference on Data Engineering, Seoul, Korea, 2015.
|
[11] |
Guo M, Huang Y, Guan Q, et al. An Efficient Data Organization and Scheduling Strategy for Accelerating Large Vector Data Rendering[J]. Transactions in GIS, 2017, 21(6): 1217-1236. doi: 10.1111/tgis.12275
|
[12] |
Pahins C A L, Stephens S A, Scheidegger C, et al. Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 671-680. doi: 10.1109/TVCG.2016.2598624
|
[13] |
Eldawy A, Mokbel M F, Jonathan C. HadoopViz: A MapReduce Framework for Extensible Visualization of Big Spatial Data[C]//The 32nd International Conference on Data Engineering, Helsinki, Finland, 2016.
|
[14] |
Yu J, Zhang Z, Sarwat M. GeoSparkViz: A Scalable Geospatial Data Visualization Framework in the Apache Spark Ecosystem[C]// The 30th International Conference on Scientific and Statistical Database Management, Bozen-Bolzano, Italy, 2018.
|
[15] |
Ma M Y, Yang A R, Wu Y, et al. DiSA: A Display-Driven Spatial Analysis Framework for Large-Scale Vector Data[C]// The 28th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 2020.
|
[16] |
马梦宇, 吴烨, 陈荦, 等. 显示导向型的大规模地理矢量实时可视化技术[J]. 计算机科学, 2020, 47(9): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202009018.htm
Ma Mengyu, Wu Ye, Chen Luo, et al. Display-Oriented Data Visualization Technique for Large-Scale Geographic Vector Data[J]. Computer Science, 2020, 47(9): 117-122 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202009018.htm
|
[17] |
周经纬. 矢量大数据高性能计算模型及关键技术研究[D]. 杭州: 浙江大学, 2016.
Zhou Jingwei. Research on High Performance Computing Model and Key Technologies of Vector Big Data[D]. Hangzhou: Zhejiang University, 2016
|
[18] |
Nievergelt J, Hinterberger H, Sevcik K C. The Grid File: An Adaptable, Symmetric Multikey File Structure[J]. ACM Transactions on Database Systems, 1984, 9(1): 38-71. doi: 10.1145/348.318586
|
[19] |
Finkel R A, Bentley J L. Quad Trees a Data Structure for Retrieval on Composite Keys[J]. Acta Informatica, 1974, 4(1), DOI: 10.1021/ja01172a501.
|
[20] |
Guttman A. R-Trees: A Dynamic Index Structure for Spatial Searching[J]. ACM SIGMOD Record, 1984, 14(2): 47-57 doi: 10.1145/971697.602266
|
[21] |
Feng J, Tang Z X, Wei M, et al. HQ-Tree: A Distributed Spatial Index Based on Hadoop[J]. China Communications, 2014, 11(7): 128-141. doi: 10.1109/CC.2014.6895392
|
[22] |
李勋. 基于Hilbert划分的并行矢量数据索引算法研究[D]. 成都: 电子科技大学, 2013.
Li Xun. Research on Parallel Vector Data Indexing Algorithm Based on Hilbert Partition[D]. Chengdu: University of Electronic Science and Technology of China, 2013
|
[23] |
Challa J S, Goyal P, Nikhil S, et al. DD-Rtree: A Dynamic Distributed Data Structure for Efficient Data Distribution Among Cluster Nodes for Spatial Data Mining Algorithms[C]// IEEE International Conference on Big Data (Big Data), Washington, USA, 2017.
|
[24] |
Ma M Y, Wu Y, Luo W Z, et al. HiBuffer: Buffer Analysis of 10-Million-Scale Spatial Data in Real Time[J]. ISPRS International Journal of Geo‐Information, 2018, 7(12): 467. doi: 10.3390/ijgi7120467
|
[25] |
Ma M Y, Wu Y, Guo N, et al. A Parallel Processing Model for Accelerating High-Resolution Geo-Spatial Accessibility Analysis[J]. IEEE Access, 2018, 6: 52936-52952. doi: 10.1109/ACCESS.2018.2870168
|
[26] |
Moussalli R, Srivatsa M, Asaad S. Fast and Flexible Conversion of Geohash Codes to and from Latitude/Longitude Coordinates[C]// The 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, Canada, 2015.
|
[27] |
OpenStreetMap[EB/OL]. [2021-08-23]. https://openstreetmap.org.
|
[28] |
Fernández, F. Boost[EB/OL]. [2021-08-23]. https://www.boost.org/doc/libs/1_76_0/libs/geometry/doc/html.
|
[1] | YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120 |
[2] | HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510 |
[3] | XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491 |
[4] | DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373. |
[5] | LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331. |
[6] | WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425. |
[7] | WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112. |
[8] | CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347. |
[9] | Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331. |
[10] | Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82. |