LIU Zebang, CHEN Luo, YANG Anran, MA Mengyu, CAO Jingzhi. Efficient Indexing Technology for Real‐Time Visualization of Large‐Scale Geographic Vector Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1512-1521. DOI: 10.13203/j.whugis20210445
Citation: LIU Zebang, CHEN Luo, YANG Anran, MA Mengyu, CAO Jingzhi. Efficient Indexing Technology for Real‐Time Visualization of Large‐Scale Geographic Vector Data[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1512-1521. DOI: 10.13203/j.whugis20210445

Efficient Indexing Technology for Real‐Time Visualization of Large‐Scale Geographic Vector Data

More Information
  • Received Date: September 26, 2021
  • Available Online: September 15, 2023
  • Objectives 

    Real-time visualization of large-scale geographic vector data is a hot and difficult topic in the field of geographic information science. In the current research, display-driven computing method (DisDC) is insensitive to data scale and can support real-time visualization of large-scale geographic vector data. However, with the growth of data scale, the index construction time and the index size of the DisDC visualization method greatly increase in data preprocessing, which greatly affects the practicability of the method.

    Methods 

    To fill the gap, a fast indexing technique based on DisDC is proposed. Rapid construction of tile-quadtree index (TQ-tree) based on quadtree recursive division of global geographic range in the pre-processing stage, in TQ-tree, the alignment of nodes and tiles/pixels are realized by encoding. In the visualization stage, according to the process of DisDC, the pixel is taken as the calculation unit to determine whether the corresponding node of the pixel in TQ-tree exists, and the pixel value can be quickly calculated to generate the final display effect.

    Results 

    Experimental results show that the proposed technique has shorter index construction time and smaller index size, and the visualization efficiency outperforms the existing DisDC visualization methods.

    Conclusions 

    The Method can support real-time visualization of multi-billion vector elements more quickly.

  • [1]
    姚晓闯. 矢量大数据管理关键技术研究[D]. 北京: 中国农业大学, 2017.

    Yao Xiaochuang. Research on Key Technologies of Vector Big Data Management[D]. Beijing: China Agricultural University, 2017
    [2]
    Tong X, Ben J, Liu Y, et al. Modeling and Expression of Vector Data in the Hexagonal Discrete Global Grid System[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2013, 4: 15-25.
    [3]
    MacEachren A M, Gahegan M, Pike W, et al. Geovisualization for Knowledge Construction and Decision Support[J]. IEEE Computer Graphics and Applications, 2004, 24(1): 13-17. doi: 10.1109/MCG.2004.1255801
    [4]
    Ma M, Wu Y, Ouyang X, et al. HiVision: Rapid Visualization of Large-Scale Spatial Vector Data[J]. Computers & Geosciences, 2021, 147: 104665.
    [5]
    苟丽美, 朱美正, 李艳明. RESTful风格地图瓦片服务的研究[J]. 计算机工程与设计, 2012, 33(9): 3609-3616. doi: 10.3969/j.issn.1000-7024.2012.09.069

    Gou Limei, Zhu Meizheng, Li Yanming. Study on Web Map Tile Service Based on RESTful[J]. Computer Engineering and Design, 2012, 33(9): 3609-3616 doi: 10.3969/j.issn.1000-7024.2012.09.069
    [6]
    殷福忠, 孙立民. 基于瓦片金字塔技术的地图发布平台开发研究[J]. 测绘与空间地理信息, 2010, 33(5): 16-17. doi: 10.3969/j.issn.1672-5867.2010.05.006

    Yin Fuzhong, Sun Limin. The Research of Map Publishing Platform Development Based on the Tile Pyramid Technology[J]. Geomatics & Spatial Information Technology, 2010, 33(5): 16-17 doi: 10.3969/j.issn.1672-5867.2010.05.006
    [7]
    Guo M, Guan Q, Xie Z, et al. A Spatially Adaptive Decomposition Approach for Parallel Vector Data Visualization of Polylines and Polygons[J]. International Journal of Geographical Information Science, 2015, 29(8): 1419-1440. doi: 10.1080/13658816.2015.1032294
    [8]
    Gao J, Wang C, Li L, et al. A Parallel Multiresolution Volume Rendering Algorithm for Large Data Visualization[J]. Parallel Computing, 2005, 31(2): 185-204. doi: 10.1016/j.parco.2005.02.005
    [9]
    Hughes J N, Annex A, Eichelberger C N, et al. GeoMesa: A Distributed Architecture for Spatio-temporal Fusion[C]// Geospatial Informatics, Fusion, and Motion Video Analytics V, Baltimore, Maryland, USA, 2015.
    [10]
    Eldawy A, Mokbel M F, Alharthi S, et al. SHAHED: A MapReduce-Based System for Querying and Visualizing Spatio-Temporal Satellite Data[C]//The 31st International Conference on Data Engineering, Seoul, Korea, 2015.
    [11]
    Guo M, Huang Y, Guan Q, et al. An Efficient Data Organization and Scheduling Strategy for Accelerating Large Vector Data Rendering[J]. Transactions in GIS, 2017, 21(6): 1217-1236. doi: 10.1111/tgis.12275
    [12]
    Pahins C A L, Stephens S A, Scheidegger C, et al. Hashedcubes: Simple, Low Memory, Real-Time Visual Exploration of Big Data[J]. IEEE Transactions on Visualization and Computer Graphics, 2017, 23(1): 671-680. doi: 10.1109/TVCG.2016.2598624
    [13]
    Eldawy A, Mokbel M F, Jonathan C. HadoopViz: A MapReduce Framework for Extensible Visualization of Big Spatial Data[C]//The 32nd International Conference on Data Engineering, Helsinki, Finland, 2016.
    [14]
    Yu J, Zhang Z, Sarwat M. GeoSparkViz: A Scalable Geospatial Data Visualization Framework in the Apache Spark Ecosystem[C]// The 30th International Conference on Scientific and Statistical Database Management, Bozen-Bolzano, Italy, 2018.
    [15]
    Ma M Y, Yang A R, Wu Y, et al. DiSA: A Display-Driven Spatial Analysis Framework for Large-Scale Vector Data[C]// The 28th International Conference on Advances in Geographic Information Systems, Seattle, WA, USA, 2020.
    [16]
    马梦宇, 吴烨, 陈荦, 等. 显示导向型的大规模地理矢量实时可视化技术[J]. 计算机科学, 2020, 47(9): 117-122. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202009018.htm

    Ma Mengyu, Wu Ye, Chen Luo, et al. Display-Oriented Data Visualization Technique for Large-Scale Geographic Vector Data[J]. Computer Science, 2020, 47(9): 117-122 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJA202009018.htm
    [17]
    周经纬. 矢量大数据高性能计算模型及关键技术研究[D]. 杭州: 浙江大学, 2016.

    Zhou Jingwei. Research on High Performance Computing Model and Key Technologies of Vector Big Data[D]. Hangzhou: Zhejiang University, 2016
    [18]
    Nievergelt J, Hinterberger H, Sevcik K C. The Grid File: An Adaptable, Symmetric Multikey File Structure[J]. ACM Transactions on Database Systems, 1984, 9(1): 38-71. doi: 10.1145/348.318586
    [19]
    Finkel R A, Bentley J L. Quad Trees a Data Structure for Retrieval on Composite Keys[J]. Acta Informatica, 1974, 4(1), DOI: 10.1021/ja01172a501.
    [20]
    Guttman A. R-Trees: A Dynamic Index Structure for Spatial Searching[J]. ACM SIGMOD Record, 1984, 14(2): 47-57 doi: 10.1145/971697.602266
    [21]
    Feng J, Tang Z X, Wei M, et al. HQ-Tree: A Distributed Spatial Index Based on Hadoop[J]. China Communications, 2014, 11(7): 128-141. doi: 10.1109/CC.2014.6895392
    [22]
    李勋. 基于Hilbert划分的并行矢量数据索引算法研究[D]. 成都: 电子科技大学, 2013.

    Li Xun. Research on Parallel Vector Data Indexing Algorithm Based on Hilbert Partition[D]. Chengdu: University of Electronic Science and Technology of China, 2013
    [23]
    Challa J S, Goyal P, Nikhil S, et al. DD-Rtree: A Dynamic Distributed Data Structure for Efficient Data Distribution Among Cluster Nodes for Spatial Data Mining Algorithms[C]// IEEE International Conference on Big Data (Big Data), Washington, USA, 2017.
    [24]
    Ma M Y, Wu Y, Luo W Z, et al. HiBuffer: Buffer Analysis of 10-Million-Scale Spatial Data in Real Time[J]. ISPRS International Journal of Geo‐Information, 2018, 7(12): 467. doi: 10.3390/ijgi7120467
    [25]
    Ma M Y, Wu Y, Guo N, et al. A Parallel Processing Model for Accelerating High-Resolution Geo-Spatial Accessibility Analysis[J]. IEEE Access, 2018, 6: 52936-52952. doi: 10.1109/ACCESS.2018.2870168
    [26]
    Moussalli R, Srivatsa M, Asaad S. Fast and Flexible Conversion of Geohash Codes to and from Latitude/Longitude Coordinates[C]// The 23rd Annual International Symposium on Field-Programmable Custom Computing Machines, Vancouver, Canada, 2015.
    [27]
    OpenStreetMap[EB/OL]. [2021-08-23]. https://openstreetmap.org.
    [28]
    Fernández, F. Boost[EB/OL]. [2021-08-23]. https://www.boost.org/doc/libs/1_76_0/libs/geometry/doc/html.
  • Related Articles

    [1]YU Daocheng, HWANG Jinway, ZHU Huizhong, LUO Jia, YUAN Jiajia. Enhancing Marine Gravity Field Precision Using SWOT Wideswath Altimetry Data: a Comparative Analysis with Traditional Altimetry Satellites[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240120
    [2]HE Huiyou, FANG Jian. Gravity Anomaly Spectrum Analysis Method and Its Application[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2092-2102. DOI: 10.13203/j.whugis20200510
    [3]XING Zhibin, LI Shanshan, WANG Wei, FAN Haopeng. Fast Approach to Constructing Normal Equation During the Time of Calculating Height Anomaly Difference by Using Vertical Deflections[J]. Geomatics and Information Science of Wuhan University, 2016, 41(6): 778-783. DOI: 10.13203/j.whugis20140491
    [4]DU Jinsong, CHEN Chao, LIANG Qing, ZHANG Yi. Lunar Gravity Anomaly and Its Computational Method[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1369-1373.
    [5]LI Zhenhai, LUO Zhicai, WANG Haihong, ZHONG Bo. Requirements for Gravity Data Within the Given Accuracy of the Interpolated Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1328-1331.
    [6]WU Yunsun, CHAO Dingbo, LI Jiancheng, WANG Zhengtao. Recovery of Ocean Depth Model of South China Sea from Altimetric Gravity Gradient Anomalies[J]. Geomatics and Information Science of Wuhan University, 2009, 34(12): 1423-1425.
    [7]WANG Haihong, NING Jinsheng, LUO Zhicai, LUO Jia. Separation of Gravity Anomalies Based on Multiscale Edges[J]. Geomatics and Information Science of Wuhan University, 2009, 34(1): 109-112.
    [8]CHAO Dingbo, YAO Yunsheng, LI Jiancheng, XU Jusheng. Interpretaion on the Tectonics and Characteristics of Altimeter-derived Gravity Anomalies in China South Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
    [9]Huang Motao, Guan Zheng, Ouyang Yongzhong. Calculation and Accuracy Estimation of Marine Mean Free-Air Gravity Anomaly[J]. Geomatics and Information Science of Wuhan University, 1995, 20(4): 327-331.
    [10]Guan Zelin, E Dongchen. The Computation of Geoidal Undulation Deflection of Vertical and Gravity Anomalies Using Clenshaw Summation[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 75-82.
  • Cited by

    Periodical cited type(10)

    1. 费婷婷,丁晓婷,阙翔,林津,林健,王紫薇,刘金福. 基于SBM-DEA与STWR模型的中国能源碳排放效率时空异质性分析. 环境工程. 2024(10): 188-200 .
    2. 熊景华,郭生练,王俊,尹家波,李娜. 长江流域陆地水储量变化及归因研究. 武汉大学学报(信息科学版). 2024(12): 2241-2248 .
    3. 姜栋,赵文吉,王艳慧,万碧玉. 地理加权回归的城市道路时空运行态势空间网格计算方法. 武汉大学学报(信息科学版). 2023(06): 988-996 .
    4. 倪杰,吴通华,赵林,李韧,谢昌卫,吴晓东,朱小凡,杜宜臻,杨成,郝君明. 环北极多年冻土区碳循环研究进展与展望. 冰川冻土. 2019(04): 845-857 .
    5. 刘大元,张雪梅,岳跃民,王克林,邹冬生. 基于Geodetector的广西喀斯特植被覆盖变化及其影响因素分析. 农业现代化研究. 2019(06): 1038-1047 .
    6. 肖屹,何宗宜,苗静,潘峰,杨好. 利用搜索引擎数据模拟疾病空间分布. 测绘通报. 2018(02): 94-98 .
    7. 苗月鲜,方秀琴,吴小君,吴陶樱. 基于GWR模型的江西省山洪灾害区域异同性研究. 水土保持通报. 2018(01): 313-318+327 .
    8. 陈吕凤,朱国平. 基于地理加权模型的南设得兰群岛北部南极磷虾渔场空间分布影响分析. 应用生态学报. 2018(03): 938-944 .
    9. 张雪梅,王克林,岳跃民,童晓伟,廖楚杰,张明阳,姜岩. 生态工程背景下西南喀斯特植被变化主导因素及其空间非平稳性. 生态学报. 2017(12): 4008-4018 .
    10. 陈广威,陈吕凤,朱国平,徐玉成,田靖寰,丁博. 南乔治亚岛冬季南极磷虾渔场时空分布及其驱动因子. 生态学杂志. 2017(10): 2803-2810 .

    Other cited types(10)

Catalog

    Article views (290) PDF downloads (95) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return