MA Shenglong, ZHOU Yu, SHEN Xuzhang. Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248
Citation: MA Shenglong, ZHOU Yu, SHEN Xuzhang. Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1190-1200. DOI: 10.13203/j.whugis20210248

Analysis of Le Teil Earthquake in France and Its Correlation with Le Teil Quarry Extraction Using Sentinel-1 and Topographic Data

More Information
  • Received Date: December 20, 2022
  • Available Online: July 21, 2022
  • Objectives 

    The Mw 4.9 Le Teil earthquake that occurred on November 11, 2019 is the most destructive earthquake recorded in the Rhône River Valley of France.

    Methods 

    We first used Sentinel-1 data to calculate the coseismic displacement field of the Le Teil earthquake with the GAMMA software package. We then obtained fault geometric parameters and coseismic displacement fields based on Bayesian inversion and the steepest descent method (SDM). We last quantified the effects of quarry extraction activity on fault by using the digital elevation model (DEM) data acquired in 2000 and 2006—2011. We calculated the extraction volume and the Coulomb stress change on the fault plane based on the Boussinesq solution of three dimension homogeneous and elastic half-space.

    Results 

    The coseismic displacement field show that the largest displacements in the line of sight of the ascending and descending orbits are 14.9 cm and 8.6 cm, respectively. We find that the seismogenic fault has a southeast dip angle of 72°, a strike of 54° and an average rake of 108°; the earthquake rupture reached the surface, with a rupture area of about 3 413 m×1 358 m, and a depth of about 1.472 km. The slip is over 0.15 m and is concentrated at a depth of 0–0.75 km with a peak slip of 0.2 m. We calculated the geodetic magnitude to be Mw 4.79. The Coulomb stress change on the fault plane is 0.024 MPa in 6–11 years after 2000.

    Conclusions 

    The rock extraction of the Le Teil quarry had been active during 1833—2019, and the extraction is even more intense after 2007. The Coulomb stress change on the fault plane could reach up to 0.1 MPa, which is much larger than the local tectonic loading rate, suggesting that the Le Teil earthquake is strongly related to rock extraction activities.

  • [1]
    De Novellis V, Convertito V, Valkaniotis S, et al. Author Correction: Coincident Locations of Rupture Nucleation During the 2019 Le Teil Earthquake, France and Maximum Stress Change from Local Cement Quarrying[J]. Communications Earth & Environment, 2021, 2(1): 1-6.
    [2]
    Ritz J F, Baize S, Ferry M, et al. Surface Rupture and Shallow Fault Reactivation During the 2019 Mw 4.9 Le Teil Earthquake, France[J]. Communications Earth & Environment, 2020, 1(1): 1-11.
    [3]
    Causse M, Cornou C, Maufroy E, et al. Exceptional Ground Motion During the Shallow Mw 4.9 2019 Le Teil Earthquake, France[J]. Communications Earth & Environment, 2021, 2(1): 1-9.
    [4]
    Sibson R H. Fault Zone Models, Heat Flow, and the Depth Distribution of Earthquakes in the Continental Crust of the United States[J]. Bulletin of the Seismological Society of America, 1982, 72(1): 151-163.
    [5]
    张国民, 李丽. 地壳介质的流变性与孕震模型[J]. 地震地质, 2003, 25(1): 1-10.

    Zhang Guomin, Li Li. Rheology of Crustal Media and a Related Seismogenic Model[J]. Seismology and Geology, 2003, 25(1): 1-10.
    [6]
    郑勇, 谢祖军. 地震震源深度定位研究的现状与展望[J]. 地震研究, 2017, 40(2): 167-175.

    Zheng Yong, Xie Zujun. Present Status and Prospect of Earthquake Focal Depth Locating[J]. Journal of Seismological Research, 2017, 40(2): 167-175.
    [7]
    Klose C D, Seeber L. Shallow Seismicity in Stable Continental Regions[J]. Seismological Research Letters, 2007, 78(5): 554-562.
    [8]
    温扬茂, 许才军. 基于敏感度的迭代拟合法反演玛尼Ms 7.9级地震滑动分布[J]. 武汉大学学报(信息科学版), 2009, 34(6): 732-735.

    Wen Yangmao, Xu Caijun. Ms 7.9 Manyi Earthquake Slip Distribution Inversion by a Sensitivity-Based Iterative Fitting Method[J]. Geomatics and Information Science of Wuhan University, 2009, 34(6): 732-735.
    [9]
    李振洪, 韩炳权, 刘振江, 等. InSAR数据约束下的2016年和2022年青海门源地震震源参数及其滑动分布[J]. 武汉大学学报(信息科学版), 2022,47(6): 887-897.

    Li Zhenhong, Han Bingquan, Liu Zhenjiang, et al. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan,Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022,47(6): 887-897.
    [10]
    张国民, 李丽, 马宏生, 等. 中国大陆地震震源深度及其构造含义[J]. 科学通报, 2002(9): 969-974.

    Zhang Guomin, Li Li, Ma Hongsheng, et al. Focal Depth Research of Earthquakes in Mainland China: Implication for Tectonics[J]. Chinese Science Bulletin, 2002(9): 969-974.
    [11]
    Foulger G R, Wilson M P, Gluyas J G, et al. Global Review of Human-Induced Earthquakes [J]. Earth-Science Reviews, 2018, 178: 438-514.
    [12]
    许才军, 汪建军, 熊维. 地震应力触发回顾与展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2085-2092.

    Xu Caijun,Wang Jianjun, Xiong Wei. Retrospection and Perspective for Earthquake Stress Triggering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2085-2092.
    [13]
    Grigoli F, Cesca S, Rinaldi A P, et al. The November 2017 Mw 5.5 Pohang Earthquake: A Possible Case of Induced Seismicity in the Republic Korea[J]. Science, 2018, 360(6392): 1003-1006.
    [14]
    Emanov A F, Emanov A A, Fateev A V, et al. Mining-Induced Seismicity at Open Pit Mines in Kuzbass (Bachatsky Earthquake on June 18, 2013)[J]. Journal of Mining Science, 2014, 50(2): 224-228.
    [15]
    Yakovlev D V, Lazarevich T I. Natural and Induced Seismic Activity in Kuzbass[J]. Journal of Mining Science, 2013, 49(6): 862-872.
    [16]
    何登发, 鲁人齐, 黄涵宇, 等. 长宁页岩气开发区地震的构造地质背景[J]. 石油勘探与开发, 2019, 46(5): 993-1006.

    He Dengfa, Lu Renqi, Huang Hanyu, et al. Tectonic and Geological Background of the Earthquake Hazards in Changning Shale Gas Development Zone, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2019, 46(5): 993-1006.
    [17]
    Lei X, Huang D, Su J, et al. Fault Reactivation and Earthquakes with Magnitudes of up to Mw 4.7 Induced by Shale-Gas Hydraulic Fracturing in Sichuan Basin, China[J]. Scientific Reports, 2017, 7(1): 1-12.
    [18]
    Lei X, Wang Z, Su J. The December 2018 ML 5.7 and January 2019 ML 5.3 Earthquakes in South Sichuan Basin Induced by Shale Gas Hydraulic Fracturing[J]. Seismological Research Letters, 2019, 90(3): 1099-1110.
    [19]
    雷兴林, 苏金蓉, 王志伟. 四川盆地南部持续增长的地震活动及其与工业注水活动的关联[J]. 中国科学:地球科学, 2020, 50(11): 1505-1532.

    Lei Xinglin, Su Jinrong, Wang Zhiwei. Growing Seismicity in the Sichuan Basin and Its Association with Industrial Activities[J]. Science China Earth Sciences, 2020, 50(11): 1505-1532.
    [20]
    Meng L, McGarr A, Zhou L, et al. An Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan Basin of China Based on Data from a Temporary Seismic Networkan Investigation of Seismicity Induced by Hydraulic Fracturing in the Sichuan Basin[J]. Bulletin of the Seismological Society of America, 2019, 109(1): 348-357.
    [21]
    易桂喜, 龙锋, 梁明剑, 等. 四川盆地荣县-威远-资中地区发震构造几何结构与构造变形特征:基于震源机制解的认识和启示[J]. 地球物理学报, 2020, 63(9): 3275-3291.

    Yi Guixi, Long Feng, Liang Mingjian, et al. Geometry and Tectonic Deformation of Seismogenic Structures in the Rongxian-Weiyuan-Zizhong Region,Sichuan Basin:Insights from Focal Mechanism Solutions[J]. Chinese Journal of Geophysics, 2020, 63(9): 3275-3291.
    [22]
    Kondas S M. Crustal Unloading as a Source of Induced Seismicity in Plainfield, Connecticut[D]. Boston:Boston College, 2020.
    [23]
    Qian Y, Chen X, Luo H, et al. An Extremely Shallow Mw 4.1 Thrust Earthquake in the Eastern Sichuan Basin (China) Likely Triggered by Unloading During Infrastructure Construction[J]. Geophysical Research Letters, 2019, 46(23): 13775-13784.
    [24]
    Wegnüller U, Werner C, Strozzi T, et al. Sentinel-1 Support in the Gamma Software[J]. Procedia Computer Science, 2016, 100: 1305-1312.
    [25]
    屠泓为, 汪荣江, 刁法启, 等. 运用SDM方法研究2001年昆仑山口西MS8.1地震破裂分布:GPS和InSAR联合反演的结果[J].地球物理学报,2016,59(6): 2103-2112.

    Tu Hongwei, Wang Rongjiang, Diao Faqi, et al. Slip Model of the 2001 Kunlun Mountain Ms 8.1 Earthquake by SDM: Joint Inversion from GPS and InSAR Data[J]. Chinese Journal of Geophysics, 2016, 59(6): 2103-2112.
    [26]
    Hetnarski R B, Ignaczak J. Mathematical Theory of Elasticity[M]. Boca Raton, FL:CRC Press Taylor & Francis Group, 2016.
    [27]
    Okada Y. Surface Deformation Due to Shear and Tensile Faults in a Half-Space[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1135-1154.
    [28]
    He P, Wen Y, Ding K, et al. Normal Faulting in the 2020 Mw 6.2 Yutian Event: Implications for Ongoing E-W Thinning in Northern Tibet[J]. Remote Sensing, 2020, 12(18): 3012.
    [29]
    He P, Wang Q, Ding K, et al. Source Model of the 2015 Mw 6.4 Pishan Earthquake Constrained by Interferometric Synthetic Aperture Radar and GPS: Insight into Blind Rupture in the Western Kunlun Shan[J]. Geophysical Research Letters, 2016, 43(4): 1511-1519.
    [30]
    Jónsson S, Zebker H, Segall P, et al. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1377-1389.
    [31]
    Bagnardi M, Hooper A. Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach[J]. Geochemistry, Geophysics, Geosystems, 2018, 19(7): 2194-2211.
    [32]
    Ampuero J P, Billant J, Brenguier F, et al.The November 11 2019 Le Teil, France M 5 Earthquake: A Triggered Event in Nuclear Country[C]//EGU General Assembly Conference, Online, 2020.
    [33]
    McGarr A, Simpson D, Seeber L. 40 Case Histories of Induced and Triggered Seismicity[J]. International Geophysics, 2002, 81(A): 647-661.
    [34]
    Perfettini H, Stein R S, Simpson R, et al. Stress Transfer by the 1988—1989 M=5.3 and 5.4 Lake Elsman Foreshocks to the Loma Prieta Fault: Unclamping at the Site of Peak Mainshock Slip[J]. Journal of Geophysical Research: Solid Earth, 1999, 104(B9): 20169-20182.
    [35]
    Reasenberg P A, Simpson R W. Response of Regional Seismicity to the Static Stress Change Produced by the Loma Prieta Earthquake[J]. Science, 1992, 255(5052): 1687-1690.
  • Cited by

    Periodical cited type(7)

    1. 牟希农. 基于小波域马尔可夫随机场的医学影像图像提取实现研究. 贵州大学学报(自然科学版). 2020(01): 74-77 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 郭利强,孟庆超. 基于多标签共享子空间学习和内核脊回归的空谱分类算法. 光子学报. 2020(05): 121-133 .
    4. 李玉,甄畅,石雪,赵泉华. 基于熵加权K-means全局信息聚类的高光谱图像分类. 中国图象图形学报. 2019(04): 630-638 .
    5. 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法. 国土资源遥感. 2019(02): 24-31 .
    6. 职露,余旭初,邹滨,刘冰. 多层级二值模式的高光谱影像空-谱分类. 武汉大学学报(信息科学版). 2019(11): 1659-1666 .
    7. 韦春桃,赵平,肖博林,白风,李小勇,杨晚芸. 结合双树复小波纹理特征和MRF模型的遥感图像分割. 测绘通报. 2019(10): 40-45 .

    Other cited types(8)

Catalog

    Article views (699) PDF downloads (68) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return