Citation: | ZHANG Zhiyu, ZHU Chang'an, TANG Min, TONG Ruofeng. A Data-driven Method for Traversability Analysis and Dataset Generation on Extraterrestrial Terrain[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1362-1369,1385. DOI: 10.13203/j.whugis20210308 |
[1] |
Huertas A, Matthies L, Rankin A. Stereo-Based Tree Traversability Analysis for Autonomous OffRoad Navigation[C]//2005 Seventh IEEE Workshops on Applications of Computer Vision(WACV/ MOTION'05), Breckenridge, CO, USA, 2005
|
[2] |
Kim D, Sun J, Oh S M, et al. Traversability Classification Using Unsupervised On-Line Visual Learning for Outdoor Robot Navigation[C]//IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 2006
|
[3] |
Zhang K, Niroui F, Ficocelli M, et al. Robot Navigation of Environments with Unknown Rough Terrain Using Deep Reinforcement Learning[C]//IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), Philadelphia, PA, USA, 2018
|
[4] |
Zhang Y F, Wang W S, Bonatti R, et al. Integrating Kinematics and Environment Context into Deep Inverse Reinforcement Learning for Predicting OffRoad Vehicle Trajectories[EB/OL]. [2021-03-11]. https://arxiv.org/pdf/1810.07225
|
[5] |
Guastella D C, Muscato G. Learning-Based Methods of Perception and Navigation for Ground Vehicles in Unstructured Environments: A Review[J]. Sensors, 2020, 21(1): 73 doi: 10.3390/s21010073
|
[6] |
李修贤, 孙敏, 黎晓东, 等. 面向空地协同应急的地表可通行性分析方法[J]. 石河子大学学报(自然科学版), 2019, 37(1): 12-20 https://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201901002.htm
Li Xiuxian, Sun Min, Li Xiaodong, et al. Terrain Traversability Analysis Method for Air-Ground Collaborative Emergency[J]. Journal of Shihezi University(Natural Science), 2019, 37(1): 12-20 https://www.cnki.com.cn/Article/CJFDTOTAL-SHZN201901002.htm
|
[7] |
Iagnemma K, Genot F, Dubowsky S. Rapid PhysicsBased Rough-Terrain Rover Planning with Sensor and Control Uncertainty[C]//IEEE International Conference on Robotics and Automation, Detroit, MI, USA, 1999
|
[8] |
Lalonde J F, Vandapel N, Huber D F, et al. Natural Terrain Classification Using Three-Dimensional LiDAR Data for Ground Robot Mobility[J]. Journal of Field Robotics, 2006, 23(10): 839-861 doi: 10.1002/rob.20134
|
[9] |
Larson J, Trivedi M. LiDAR Based Off-Road Negative Obstacle Detection and Analysis[C]//14th International IEEE Conference on Intelligent Transportation Systems(ITSC), Washington DC, USA, 2011
|
[10] |
Kuthirummal S, Das A, Samarasekera S. A Graph Traversal Based Algorithm for Obstacle Detection Using LiDAR or Stereo[C]//IEEE/RSJ International Conference on Intelligent Robots and Systems, San Francisco, CA, USA, 2011
|
[11] |
Langer D, Rosenblatt J K, Hebert M. A BehaviorBased System for Off-Road Navigation[J]. IEEE Transactions on Robotics and Automation, 1994, 10(6): 776-783 doi: 10.1109/70.338532
|
[12] |
Gennery D B. Traversability Analysis and Path Planning for a Planetary Rover[J]. Autonomous Robots, 1999, 6(2): 131-146 doi: 10.1023/A:1008831426966
|
[13] |
Kolter J Z, Rodgers M P, Ng A Y. A Control Architecture for Quadruped Locomotion over Rough Terrain[C]//IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 2008
|
[14] |
Zucker M, Ratliff N, Stolle M, et al. Optimization and Learning for Rough Terrain Legged Locomotion [J]. The International Journal of Robotics Research, 2011, 30(2): 175-191 doi: 10.1177/0278364910392608
|
[15] |
顾海燕, 李海涛, 闫利, 等. 地理本体驱动的遥感影像面向对象分析方法[J]. 武汉大学学报·信息科学版, 2018, 43(1): 31-36 doi: 10.13203/j.whugis20150468
Gu Haiyan, Li Haitao, Yan Li, et al. A Geographic Object-Based Image Analysis Methodology Based on Geo-ontology[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 31-36 doi: 10.13203/j.whugis20150468
|
[16] |
Ososinski M, Labrosse F. Automatic Driving on IllDefined Roads: An Adaptive, Shape-Constrained, Color-Based Method[J]. Journal of Field Robotics, 2015, 32(4): 504-533 doi: 10.1002/rob.21494
|
[17] |
Mei J L, Yu Y F, Zhao H J, et al. Scene-Adaptive Off-Road Detection Using a Monocular Camera[J]. IEEE Transactions on Intelligent Transportation Systems, 2018, 19(1): 242-253 doi: 10.1109/TITS.2017.2768573
|
[18] |
Holder C J, Breckon T P. Learning to Drive: Using Visual Odometry to Bootstrap Deep Learning for Off-Road Path Prediction[C]//IEEE Intelligent Vehicles Symposium(Ⅳ), Changshu, China, 2018
|
[19] |
Faigl J, Prágr M. On Unsupervised Learning of Traversal Cost and Terrain Types Identification Using Self-Organizing Maps[M]//Artificial Neural Networks and Machine Learning–ICANN 2019: Theoretical Neural Computation. Cham: Springer, 2019: 654-668
|
[20] |
Sutoh M, Otsuki M, Wakabayashi S, et al. The Right Path: Comprehensive Path Planning for Lunar Exploration Rovers[J]. IEEE Robotics & Automation Magazine, 2015, 22(1): 22-33 http://ieeexplore.ieee.org/document/7059362/citations
|
[21] |
Zhang Y F, Wang W S, Bonatti R, et al. Integrating Kinematics and Environment Context into Deep Inverse Reinforcement Learning for Predicting OffRoad Vehicle Trajectories [EB/OL]. [2018-02- 16]. https://arxiv.org/pdf/1810.07225
|
[22] |
Andrakhanov A, Stuchkov A. Traversability Estimation System for Mobile Robot in Heterogeneous Environment with Different Underlying Surface Characteristics[C]//12th International Scientific and Technical Conference on Computer Sciences and Information Technologies(CSIT), Lviv, Ukraine, 2017
|
[23] |
刘浩敏, 章国锋, 鲍虎军. 基于单目视觉的同时定位与地图构建方法综述[J]. 计算机辅助设计与图形学学报, 2016, 28(6): 855-868 doi: 10.3969/j.issn.1003-9775.2016.06.001
Liu Haomin, Zhang Guofeng, Bao Hujun. A Survey of Monocular Simultaneous Localization and Mapping[J]. Journal of Computer-Aided Design & Computer Graphics, 2016, 28(6): 855-868 doi: 10.3969/j.issn.1003-9775.2016.06.001
|
[24] |
李小倩, 何伟, 朱世强, 等. 基于环境语义信息的同步定位与地图构建方法综述[J]. 工程科学学报, 2021, 43(6): 754-767 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202106004.htm
Li Xiaoqian, He Wei, Zhu Shiqiang, et al. Survey of Simultaneous Localization and Mapping Based on Environmental Semantic Information[J]. Chinese Journal of Engineering, 2021, 43(6): 754-767 https://www.cnki.com.cn/Article/CJFDTOTAL-BJKD202106004.htm
|
[25] |
Chen Z X, Xu X C, Wang Y, et al. Deep Phase Correlation for End-to-End Heterogeneous Sensor Measurements Matching [EB/OL]. [2020-03-01]. https://arxiv. org/abs/2008. 09474
|
[26] |
刘阳, 于兴超, 贾占永. 面向车辆通过性的地理因子分析与应用[J]. 国防科技, 2020, 41(5): 105-110 https://www.cnki.com.cn/Article/CJFDTOTAL-GFCK202005018.htm
Liu Yang, Yu Xingchao, Jia Zhanyong. Geographical Factor Analysis and Application for Vehicle Trafficability[J]. National Defense Technology, 2020, 41(5): 105-110 https://www.cnki.com.cn/Article/CJFDTOTAL-GFCK202005018.htm
|
[27] |
Singh S, Simmons R, Smith T, et al. Recent Pro gress in Local and Global Traversability for Planetary Rovers[C]//IEEE International Conference on Robotics and Automation, San Francisco, CA, USA, 2000
|
[28] |
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional Networks for Biomedical Image Segmentation [C]//Medical Image Computing and Computer-Assisted Intervention, Munich, Germany, 2015
|
[29] |
Oktay O, Schlemper J, Folgoc L L, et al. Attention U Net: Learning Where to Look for the Pancreas [EB/OL]. [2020-03-01]. https://arxiv.org/pdf/1804.03999
|
[30] |
Duchi J, Hazan E, Singer Y. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization[J]. The Journal of Machine Learning Research, 2011, 12(1-2): 2 121-2 159 http://web.stanford.edu/~jduchi/projects/DuchiHaSi10.html
|
[1] | WANG Yong, HAN Yaoyao, LIU Jiping, CAO Yuanhui, CHEN Hongyu, KANG Mengjun, ZHU Jun. Emergency Rescue Geospatial Intelligence: Conceptual Characteristics, Generation Technologies, and Application Practices[J]. Geomatics and Information Science of Wuhan University. |
[2] | ZHU Litao, SHEN Jie, WANG Xing, ZHOU Jingyi, HOU Yingxu, ZHANG Cheng. An Extraction Method of Emotional Landmarks in Large Malls Based on User-Generated Content[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1693-1701. DOI: 10.13203/j.whugis20210488 |
[3] | LI Xiaolin, LI Gang, ZHANG Enqi, GU Guanghua. Determinant Point Process Sampling Method for Text‑to‑Image Generation[J]. Geomatics and Information Science of Wuhan University, 2024, 49(2): 246-255. DOI: 10.13203/j.whugis20210373 |
[4] | HOU Xujuan, DENG Xiaotong, HUA Weihua, YIN Wanting, LI Peng, QI Chunyu. DEM Super-resolution Reconstruction Method Based on Adaptive Generative Adversarial Network[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240186 |
[5] | LU Chuanwei, SUN Qun, ZHAO Yunpeng, SUN Shijie, MA Jingzhen, CHENG Mianmian, LI Yuanfu. A Road Extraction Method Based on Conditional Generative Adversarial Nets[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 807-815. DOI: 10.13203/j.whugis20190159 |
[6] | TAN Guoxin, SUN Chuanming. An Interactive Approach to Generate Realistic 3DFace[J]. Geomatics and Information Science of Wuhan University, 2014, 39(8): 992-997. DOI: 10.13203/j.whugis20130152 |
[7] | XU Yanyan, XU Zhengquan, ZHANG Yuxia. A High Efficient Content Security Protection Method Suitable for Remote Sensing Image[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 936-939. |
[8] | WANG Jiechen, SHEN Dingtao, CUI Can. RLE-B Algorithm for Buffer Generation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(9): 1121-1124. |
[9] | Huang Jiana, Wu Junchang. Reliability Analysis and Gross Error Detection of Traverse Network[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 51-54. |
[10] | He Zongyi. A Study of the Method for Measuring the Information Content of Map[J]. Geomatics and Information Science of Wuhan University, 1987, 12(1): 70-80. |