Citation: | GENG Tao, LI Zhongxing, XIE Xin, MA Zhuang, ZHAO Qile. GNSS Receiver-Related Pseudorange Bias Determination Method and Its Effect on Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1134-1145. DOI: 10.13203/j.whugis20210276 |
[1] |
Montenbruck O. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS): Achievements, Prospects and Challenges[J]. Advances in Space Research, 2017, 59(7): 1671-1697. doi: 10.1016/j.asr.2017.01.011
|
[2] |
隋心, 施闯, 徐爱功, 等. GPS/BDS接收机端系统偏差稳定性对整周模糊度固定的影响[J]. 武汉大学学报(信息科学版), 2018, 43(2): 175-182. doi: 10.13203/j.whugis20160178
Sui Xin, Shi Chuang, Xu Aigong, et al. The Stability of GPS/BDS Inter-system Biases at the Receiver End and Its Effect on Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 175-182. doi: 10.13203/j.whugis20160178
|
[3] |
Geng J, Teferle F N, Meng X, et al. Towards PPP-RTK: Ambiguity Resolution in Real-Time Precise Point Positioning[J]. Advances in Space Research, 2011, 47(10): 1664-1673. doi: 10.1016/j.asr.2010.03.030
|
[4] |
楼益栋, 龚晓鹏, 辜声峰, 等. 北斗卫星伪距码偏差特性及其影响分析[J]. 武汉大学学报(信息科学版), 2017, 42(8): 1040-1046. doi: 10.13203/j.whugis20150107
Lou Yidong, Gong Xiaopeng, Gu Shengfeng, et al. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. doi: 10.13203/j.whugis20150107
|
[5] |
Coco D S, Coker C, Dahlke S R, et al. Variability of GPS Satellite Differential Group Delay Biases[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6): 931-938. doi: 10.1109/7.104264
|
[6] |
Sardón E, Zarraoa N. Estimation of Total Electron Content Using GPS Data: How Stable Are the Differential Satellite and Receiver Instrumental Biases?[J]. Radio Science, 1997, 32(5): 1899-1910. doi: 10.1029/97RS01457
|
[7] |
Hauschild A, Steigenberger P, Montenbruck O. Inter-receiver GNSS Pseudorange Biases and Their Effect on Clock and DCB Estimation[C]//The 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, Florida, USA, 2019.
|
[8] |
Gruber B. Global Positioning Systems Directorate [M]. New York, USA: Nova Science Publishers, 2012.
|
[9] |
Union E. European GNSS (Galileo) Open Service: Signal in Space Interface Control Document[M]. Luxembourg: Publications Office of the European Union, 2010.
|
[10] |
Hauschild A, Montenbruck O. The Effect of Correlator and Front-End Design on GNSS Pseudorange Biases for Geodetic Receivers[J]. Navigation, 2016, 63(4): 443-453. doi: 10.1002/navi.165
|
[11] |
Wanninger L, Beer S. BeiDou Satellite-Induced Code Pseudorange Variations: Diagnosis and Therapy[J]. GPS Solutions, 2015, 19(4): 639-648. doi: 10.1007/s10291-014-0423-3
|
[12] |
李昕, 张小红, 曾琪, 等. 北斗卫星伪距偏差模型估计及其对精密定位的影响[J]. 武汉大学学报(信息科学版), 2017, 42(10): 1461-1467. doi: 10.13203/j.whugis20160062
Li Xin, Zhang Xiaohong, Zeng Qi, et al. The Estimation of BeiDou Satellite-Induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. doi: 10.13203/j.whugis20160062
|
[13] |
Geng T, Xie X, Zhao Q L, et al. Improving BDS Integer Ambiguity Resolution Using Satellite-Induced Code Bias Correction for Precise Orbit Determination[J]. GPS Solutions, 2017, 21(3): 1191-1201.
|
[14] |
Schaer S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System [D]. Switzerland: Astronomisches Institute of University Bern, 1999.
|
[15] |
唐卫明, 刘前, 高柯夫, 等. 北斗伪距码偏差对基线解算的影响分析[J]. 武汉大学学报(信息科学版), 2018, 43(8): 1199-1206. doi: 10.13203/j.whugis20170110
Tang Weiming, Liu Qian, Gao Kefu, et al. Influence of BDS Pseudorange Code Biases on Baseline Resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1199-1206. doi: 10.13203/j.whugis20170110
|
[16] |
常志巧, 刘利, 胡小工, 等. 北斗导航卫星伪距偏差特性及减弱方法[J]. 中国科学: 物理学力学天文学, 2021, 51(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202101009.htm
Chang Zhiqiao, Liu Li, Hu Xiaogong, et al. Pseudorange-Bias Characteristics and the Weakening Method of BDS Satellites[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202101009.htm
|
[17] |
袁海军, 章浙涛, 何秀凤, 等. 北斗三号卫星差分码偏差稳定性分析及其对单点定位的影响[J]. 武汉大学学报(信息科学版), 2023, 48(3): 425-432. doi: 10.13203/j.whugis20200517
Yuan Haijun, Zhang Zhetao, He Xiufeng, et al. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. doi: 10.13203/j.whugis20200517
|
[18] |
Edgar C, Czopek F, Barker B. A Co-operative Anomaly Resolution on PRN-19[C]//The 13th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, Texas, USA, 2001.
|
[19] |
Mitelman A M, Phelts R E, Akos D M, et al. Signal Deformations on Nominally Healthy GPS Satellites[C]//The National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 2004.
|
[20] |
Pini M, Akos D M. Analysis of GNSS Signals as Observed via a High Gain Parabolic Antenna[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, Long Beach, CA, USA, 2005.
|
[21] |
Phelts R E, Akos D M. Effects of Signal Deformations on Modernized GNSS Signals[J]. Journal of Global Positioning Systems, 2006, 5(1/2): 2-10.
|
[22] |
Gong Xiaopeng. Improving GPS and Galileo Precise Data Processing Based on Calibration of Signal Distortion Biases[J]. Measurement, 2021, 174: 108981.
|
[23] |
Lestarquit L, Gregoire Y, Thevenon P. Characterising the GNSS Correlation Function Using a High Gain Antenna and Long Coherent Integration: Application to Signal Quality Monitoring[C]//IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, USA, 2012.
|
[24] |
Hauschild A, Montenbruck O. A Study on the Dependency of GNSS Pseudorange Biases on Correlator Spacing[J]. GPS Solutions, 2016, 20(2): 159-171.
|
[25] |
Vergara M, Sgammini M, Thoelert S, et al. Tracking Error Modeling in Presence of Satellite Imperfections[J]. Navigation, 2016, 63(1): 3-13.
|
[26] |
Gong X P, Lou Y D, Zheng F, et al. Evaluation and Calibration of BeiDou Receiver-Related PseudoRange Biases[J]. GPS Solutions, 2018, 22(4): 98.
|
[27] |
赵文. 北斗2/3联合精密单点定位关键技术研究[D]. 武汉: 武汉大学, 2020.
Zhao Wen. Research on Key Technology of Combined BeiDou-2 and BeiDou-3 Precise Point Positioning[D]. Wuhan: Wuhan University, 2020
|
[28] |
Jiao G Q, Song S L, Jiao W H. Improving BDS-2 and BDS-3 Joint Precise Point Positioning with Time Delay Bias Estimation[J]. Measurement Science and Technology, 2020, 31(2): 025001.
|
[1] | SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030 |
[2] | ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273 |
[3] | ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202 |
[4] | YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025 |
[5] | ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119 |
[6] | ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078 |
[7] | ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278. |
[8] | ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12. |
[9] | FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401. |
[10] | Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50. |