GENG Tao, LI Zhongxing, XIE Xin, MA Zhuang, ZHAO Qile. GNSS Receiver-Related Pseudorange Bias Determination Method and Its Effect on Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1134-1145. DOI: 10.13203/j.whugis20210276
Citation: GENG Tao, LI Zhongxing, XIE Xin, MA Zhuang, ZHAO Qile. GNSS Receiver-Related Pseudorange Bias Determination Method and Its Effect on Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1134-1145. DOI: 10.13203/j.whugis20210276

GNSS Receiver-Related Pseudorange Bias Determination Method and Its Effect on Positioning

More Information
  • Received Date: September 05, 2021
  • Available Online: July 07, 2023
  • Published Date: July 04, 2023
  •   Objectives  Global navigation satellite system(GNSS) satellite chip shape distortions lead to individual biases in the pseudorange measurements. These biases are the results of the correlator's tracking response and thus depend on the correlator and front-end design of the receiver. As a result, different receivers are likely to exhibit inconsistent biases, called receiver-related pseudorange biases. The researches show that the receiver-related pseudorange biases cannot be absorbed by clock offset, which will affect GNSS precision applications.
      Methods  We estimate the receiver-related pseudorange biases of global positioning system (GPS)/BeiDou satellite navigation system (BDS)/Galileo satellite navigation system(Galileo)from 9 short/zero-baselines stations from the multi-GNSS experiment network using double difference method. The baselines are divided into three groups according to the combinations of two receivers of one baseline.
      Results  The results indicate that the receiver-related pseudorange biases of receivers with different manufacturers even the same manufacturers with different models cannot be neglected. For baselines with receivers from different manufacturers, the inconsistences of pseudorange biases can reach up to 160 cm.
      Conclusions  Among GPS, Galileo and BDS, Galileo shows the smallest pseudorange biases, while BDS in general is the largest. Furthermore, the stability of pseudorange biases is analyzed, the results suggest that estimated receiver-related pseudorange biases are quite stable with the standard deviation less than 12 cm for the three systems. We investigate the effect of receiver-related pseudorange biases on integer ambiguity resolution and pseudorange relative positioning, with the pseudorange biases correction, the root mean squares of fractional parts of double difference Melbourne-Wübbena combination are decreased by 17%, 22%, and 14% for GPS, BDS, Galileo, respectively. An improvement of pseudorange relative positioning accuracy is also confirmed, the 3D positioning errors of GPS, BDS, Galileo are reduced from 84.4, 77.3 and 60.0 to 80.1, 72.1 and 57.0 cm, respectively.
  • [1]
    Montenbruck O. The Multi-GNSS Experiment (MGEX) of the International GNSS Service (IGS): Achievements, Prospects and Challenges[J]. Advances in Space Research, 2017, 59(7): 1671-1697. doi: 10.1016/j.asr.2017.01.011
    [2]
    隋心, 施闯, 徐爱功, 等. GPS/BDS接收机端系统偏差稳定性对整周模糊度固定的影响[J]. 武汉大学学报(信息科学版), 2018, 43(2): 175-182. doi: 10.13203/j.whugis20160178

    Sui Xin, Shi Chuang, Xu Aigong, et al. The Stability of GPS/BDS Inter-system Biases at the Receiver End and Its Effect on Ambiguity Resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 175-182. doi: 10.13203/j.whugis20160178
    [3]
    Geng J, Teferle F N, Meng X, et al. Towards PPP-RTK: Ambiguity Resolution in Real-Time Precise Point Positioning[J]. Advances in Space Research, 2011, 47(10): 1664-1673. doi: 10.1016/j.asr.2010.03.030
    [4]
    楼益栋, 龚晓鹏, 辜声峰, 等. 北斗卫星伪距码偏差特性及其影响分析[J]. 武汉大学学报(信息科学版), 2017, 42(8): 1040-1046. doi: 10.13203/j.whugis20150107

    Lou Yidong, Gong Xiaopeng, Gu Shengfeng, et al. The Characteristic and Effect of Code Bias Variations of BeiDou[J]. Geomatics and Information Science of Wuhan University, 2017, 42(8): 1040-1046. doi: 10.13203/j.whugis20150107
    [5]
    Coco D S, Coker C, Dahlke S R, et al. Variability of GPS Satellite Differential Group Delay Biases[J]. IEEE Transactions on Aerospace and Electronic Systems, 1991, 27(6): 931-938. doi: 10.1109/7.104264
    [6]
    Sardón E, Zarraoa N. Estimation of Total Electron Content Using GPS Data: How Stable Are the Differential Satellite and Receiver Instrumental Biases?[J]. Radio Science, 1997, 32(5): 1899-1910. doi: 10.1029/97RS01457
    [7]
    Hauschild A, Steigenberger P, Montenbruck O. Inter-receiver GNSS Pseudorange Biases and Their Effect on Clock and DCB Estimation[C]//The 32nd International Technical Meeting of the Satellite Division of the Institute of Navigation, Miami, Florida, USA, 2019.
    [8]
    Gruber B. Global Positioning Systems Directorate [M]. New York, USA: Nova Science Publishers, 2012.
    [9]
    Union E. European GNSS (Galileo) Open Service: Signal in Space Interface Control Document[M]. Luxembourg: Publications Office of the European Union, 2010.
    [10]
    Hauschild A, Montenbruck O. The Effect of Correlator and Front-End Design on GNSS Pseudorange Biases for Geodetic Receivers[J]. Navigation, 2016, 63(4): 443-453. doi: 10.1002/navi.165
    [11]
    Wanninger L, Beer S. BeiDou Satellite-Induced Code Pseudorange Variations: Diagnosis and Therapy[J]. GPS Solutions, 2015, 19(4): 639-648. doi: 10.1007/s10291-014-0423-3
    [12]
    李昕, 张小红, 曾琪, 等. 北斗卫星伪距偏差模型估计及其对精密定位的影响[J]. 武汉大学学报(信息科学版), 2017, 42(10): 1461-1467. doi: 10.13203/j.whugis20160062

    Li Xin, Zhang Xiaohong, Zeng Qi, et al. The Estimation of BeiDou Satellite-Induced Code Bias and Its Impact on the Precise Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1461-1467. doi: 10.13203/j.whugis20160062
    [13]
    Geng T, Xie X, Zhao Q L, et al. Improving BDS Integer Ambiguity Resolution Using Satellite-Induced Code Bias Correction for Precise Orbit Determination[J]. GPS Solutions, 2017, 21(3): 1191-1201.
    [14]
    Schaer S. Mapping and Predicting the Earth's Ionosphere Using the Global Positioning System [D]. Switzerland: Astronomisches Institute of University Bern, 1999.
    [15]
    唐卫明, 刘前, 高柯夫, 等. 北斗伪距码偏差对基线解算的影响分析[J]. 武汉大学学报(信息科学版), 2018, 43(8): 1199-1206. doi: 10.13203/j.whugis20170110

    Tang Weiming, Liu Qian, Gao Kefu, et al. Influence of BDS Pseudorange Code Biases on Baseline Resolution[J]. Geomatics and Information Science of Wuhan University, 2018, 43(8): 1199-1206. doi: 10.13203/j.whugis20170110
    [16]
    常志巧, 刘利, 胡小工, 等. 北斗导航卫星伪距偏差特性及减弱方法[J]. 中国科学: 物理学力学天文学, 2021, 51(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202101009.htm

    Chang Zhiqiao, Liu Li, Hu Xiaogong, et al. Pseudorange-Bias Characteristics and the Weakening Method of BDS Satellites[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2021, 51(1): 85-95. https://www.cnki.com.cn/Article/CJFDTOTAL-JGXK202101009.htm
    [17]
    袁海军, 章浙涛, 何秀凤, 等. 北斗三号卫星差分码偏差稳定性分析及其对单点定位的影响[J]. 武汉大学学报(信息科学版), 2023, 48(3): 425-432. doi: 10.13203/j.whugis20200517

    Yuan Haijun, Zhang Zhetao, He Xiufeng, et al. Stability Analysis of BDS-3 Satellite Differential Code Bias and Its Impacts on Single Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 425-432. doi: 10.13203/j.whugis20200517
    [18]
    Edgar C, Czopek F, Barker B. A Co-operative Anomaly Resolution on PRN-19[C]//The 13th International Technical Meeting of the Satellite Division of the Institute of Navigation, Salt Lake City, Texas, USA, 2001.
    [19]
    Mitelman A M, Phelts R E, Akos D M, et al. Signal Deformations on Nominally Healthy GPS Satellites[C]//The National Technical Meeting of the Institute of Navigation, San Diego, CA, USA, 2004.
    [20]
    Pini M, Akos D M. Analysis of GNSS Signals as Observed via a High Gain Parabolic Antenna[C]//International Technical Meeting of the Satellite Division of the Institute of Navigation, Long Beach, CA, USA, 2005.
    [21]
    Phelts R E, Akos D M. Effects of Signal Deformations on Modernized GNSS Signals[J]. Journal of Global Positioning Systems, 2006, 5(1/2): 2-10.
    [22]
    Gong Xiaopeng. Improving GPS and Galileo Precise Data Processing Based on Calibration of Signal Distortion Biases[J]. Measurement, 2021, 174: 108981.
    [23]
    Lestarquit L, Gregoire Y, Thevenon P. Characterising the GNSS Correlation Function Using a High Gain Antenna and Long Coherent Integration: Application to Signal Quality Monitoring[C]//IEEE/ION Position, Location and Navigation Symposium, Myrtle Beach, USA, 2012.
    [24]
    Hauschild A, Montenbruck O. A Study on the Dependency of GNSS Pseudorange Biases on Correlator Spacing[J]. GPS Solutions, 2016, 20(2): 159-171.
    [25]
    Vergara M, Sgammini M, Thoelert S, et al. Tracking Error Modeling in Presence of Satellite Imperfections[J]. Navigation, 2016, 63(1): 3-13.
    [26]
    Gong X P, Lou Y D, Zheng F, et al. Evaluation and Calibration of BeiDou Receiver-Related PseudoRange Biases[J]. GPS Solutions, 2018, 22(4): 98.
    [27]
    赵文. 北斗2/3联合精密单点定位关键技术研究[D]. 武汉: 武汉大学, 2020.

    Zhao Wen. Research on Key Technology of Combined BeiDou-2 and BeiDou-3 Precise Point Positioning[D]. Wuhan: Wuhan University, 2020
    [28]
    Jiao G Q, Song S L, Jiao W H. Improving BDS-2 and BDS-3 Joint Precise Point Positioning with Time Delay Bias Estimation[J]. Measurement Science and Technology, 2020, 31(2): 025001.
  • Related Articles

    [1]SONG Weiwei, SONG Qisheng, HE Qianqian, GONG Xiaopeng, GU Shengfeng. Analysis of PPP-B2b Positioning Performance Enhanced by High-Precision Ionospheric Products[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1517-1526. DOI: 10.13203/j.whugis20230030
    [2]ZHU Shaolin, YUE Dongjie, HE Lina, CHEN Jian, LIU Shengnan. BDS-2/BDS-3 Joint Triple-Frequency Precise Point Positioning Models and Bias Characteristic Analysis[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2049-2059. DOI: 10.13203/j.whugis20210273
    [3]ZHAO Qile, TAO Jun, GUO Jing, CHEN Guo, XU Xiaolong, ZHANG Qiang, ZHANG Gaojian, XU Shengyi, LI Junqiang. Wide-Area Instantaneous cm-Level Precise Point Positioning: Method and Service System[J]. Geomatics and Information Science of Wuhan University, 2023, 48(7): 1058-1069. DOI: 10.13203/j.whugis20230202
    [4]YAN Zhongbao, ZHANG Xiaohong. Partial Ambiguity Resolution Method and Results Analysis for GNSS Uncombined PPP[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 979-989. DOI: 10.13203/j.whugis20220025
    [5]ZHANG Hui, HAO Jinming, LIU Weiping, ZHOU Rui, TIAN Yingguo. GPS/BDS Precise Point Positioning Model with Receiver DCB Parameters for Raw Observations[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 495-500, 592. DOI: 10.13203/j.whugis20170119
    [6]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [7]ZHANG Xiaohong, CAI Shixiang, LI Xingxing, GUO Fei. Accuracy Analysis of Time and Frequency Transfer Based on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 274-278.
    [8]ZHANG Xiaohong, GUO Fei, LI Xingxing, LIN Xiaojing. Study on Precise Point Positioning Based on Combined GPS and GLONASS[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 9-12.
    [9]FU Jianhong, YUAN Xiuxiao. Influence of GPS Base Station on Accuracy of Positioning by Airborne Position and Orientation System[J]. Geomatics and Information Science of Wuhan University, 2007, 32(5): 398-401.
    [10]Huang Shengxiang, Zhang Yan. Estimation of Accuracy Indicators for GPS Relative Positioning[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 47-50.
  • Cited by

    Periodical cited type(22)

    1. 肖斌宸,叶飞,叶险峰,曾翔强. 电离层和地形复杂区域北斗/GNSS实时PPP性能及大气分析. 数据与计算发展前沿(中英文). 2025(01): 108-118 .
    2. 侯诚,史俊波,苟劲松,郭际明,邹进贵. 多路径误差对BDS-3变形监测精度的影响. 大地测量与地球动力学. 2024(02): 128-133 .
    3. 邓陈喜,姜维,王剑,蔡伯根. 基于北斗3号PPP-B2b信号的实时精密单点定位方法研究. 铁道学报. 2024(02): 63-73 .
    4. 于合理,孙晓东,贾赞杰,武智佳,代桃高. 限制环境下的GNSS精密授时方法研究综述. 海洋测绘. 2024(02): 46-50 .
    5. 许扬胤,任夏,明锋. 北斗三号PPP-B2b信号精密单点定位服务可用性分析. 全球定位系统. 2024(03): 10-19 .
    6. 肖恭伟,卞逸驰,何在民,广伟,尹翔飞,张润芝. 北斗三号PPP-B2b差分码偏差对UPPP解算的影响. 西安邮电大学学报. 2024(02): 1-10 .
    7. 宋伟伟,宋啟晟,何倩倩,龚晓鹏,辜声峰. 高精度电离层产品增强PPP-B2b定位性能分析. 武汉大学学报(信息科学版). 2024(09): 1517-1526 .
    8. 索世恒,韩昆,张永峰. 伽利略高精度服务产品与其全球定位性能评估. 地理空间信息. 2024(11): 100-104+121 .
    9. 孙爽,王敏,刘长建,孟欣,季锐. PPP-B2b服务钟差常数偏差特性及对定位的影响分析. 测绘科学. 2023(01): 8-15 .
    10. 郭文飞,朱萌萌,辜声峰,左鸿铭,陈金鑫. GNSS精密时频接收机时钟调控模型与参数设计方法. 武汉大学学报(信息科学版). 2023(07): 1126-1133 .
    11. 唐守普,吴文坛,夏振营,史进志,赵婉清,莫雁寒. 北斗三号PPP-B2b独立定位分析与应用. 河北省科学院学报. 2023(03): 61-69 .
    12. 赵淑洁,赵当丽,黄媛媛,纪元法. 基于PPP-B2b改正产品的北斗实时精密星历精度分析. 时间频率学报. 2023(02): 141-149 .
    13. 张润芝,何在民,马红皎,武建锋,广伟,肖恭伟. 北斗三号PPP-B2b信号跟踪环路的极点分布法设计. 时间频率学报. 2023(02): 161-169 .
    14. 姚夏,李志敏,吴如楠,毛飞宇,龚晓鹏. 北斗三号PPP-B2b信号时间同步性能分析. 导航定位学报. 2023(04): 84-89 .
    15. 史俊波,董新莹,欧阳晨皓,彭文杰,姚宜斌. 基于北斗三号PPP服务的快速静态和低动态定位性能分析. 大地测量与地球动力学. 2023(10): 997-1002 .
    16. 韩晓红,孙保琪,张喆,周红源,杨海彦,赵当丽,杨旭海. 基于北斗三号PPP-B2b轨道的实时精密共视时间传递. 导航定位与授时. 2023(04): 103-111 .
    17. 肖鹏,孙付平,张伦东,肖凯,商向永. 北斗三号PPP-B2b服务实时动态定位性能分析. 导航定位学报. 2023(05): 21-28 .
    18. 刘杨,曾安敏,郑翠娥,江鹏,刘焱雄. 广播式远程精密水下导航定位技术. 哈尔滨工程大学学报. 2023(11): 1987-1995 .
    19. 王林伟,周长江,余海锋,岳彩亚. 全球精密单点定位性能评估. 导航定位与授时. 2023(06): 86-92 .
    20. 赵泉涌,潘树国,缪巍巍,沈超,高旺,赵庆. PPP-B2b常数偏差实时改正后的多频单历元定位. 测绘科学. 2023(11): 61-68 .
    21. 彭松,刘建坤,张云龙,常丹,孙兆辉. 基于北斗三号远程监测系统的公路岩质边坡开挖变形分析. 科学技术与工程. 2022(33): 14898-14906 .
    22. 余德荧,金际航,刘一,边少锋. 基于北斗三号PPP-B2b信号的海上精密定位试验分析. 海洋测绘. 2022(06): 51-55+64 .

    Other cited types(9)

Catalog

    Article views (583) PDF downloads (176) Cited by(31)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return