CHEN Xiang, YANG Zhiqiang, TIAN Zhen, YANG Bing, LIANG Pei. Denoising Method for GNSS Time Series Based on GA‑VMD and Multi‐scale Permutation Entropy[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1425-1434. DOI: 10.13203/j.whugis20210215
Citation: CHEN Xiang, YANG Zhiqiang, TIAN Zhen, YANG Bing, LIANG Pei. Denoising Method for GNSS Time Series Based on GA‑VMD and Multi‐scale Permutation Entropy[J]. Geomatics and Information Science of Wuhan University, 2023, 48(9): 1425-1434. DOI: 10.13203/j.whugis20210215

Denoising Method for GNSS Time Series Based on GA‑VMD and Multi‐scale Permutation Entropy

More Information
  • Received Date: December 03, 2021
  • Available Online: January 13, 2022
  • Objectives 

    Global navigation satellite system (GNSS) coordinate time series provide important data support for the study of crustal movement and deformation, and plate tectonics. Due to the noise caused by various external factors, the GNSS coordinate time series cannot reflect the real motion information of the station well. To effectively reduce the noise in the GNSS time series, we adopted a noise-reduction method combining genetic algorithm (GA) and variational mode decomposition (VMD-GA-VMD).

    Methods 

    First, the genetic algorithm was used to optimize VMD parameters, and the envelope entropy of the input signal was used as the fitness function of the genetic algorithm to find the optimal VMD parameter combination suitable for the signal. According to the optimized parameters, the signal was decomposed by VMD to obtain a series of modal components. Then we calculated the multi-scale permutation entropy (MPE) of each component and then regarded the MPE as the criterion of the noise component. Finally, according to the MPE, the noise components were identified and removed, and the remaining components were reconstructed to obtain the noise-reduced signal. In this paper, the noise reduction effect of GA-VMD was analyzed through the example of noise reduction of analog signal and observation data, and compared with wavelet denoising (WD) and empirical mode decomposition (EMD) methods.

    Results 

    The experiment results show that: (1) The noise reduction results from the analog signals show that WD and EMD have the incomplete and excessive troubles on the noise reduction, respectively. However, GA-VMD can effectively eliminate noise and retain effective signals. From the evaluation index, compared with WD and EMD, the signal-to-noise ratio were increased by 5.18 dB and 2.91 dB, the correlation coefficient by 0.05 and 0.02, respectively, when using GA-VMD. (2) For the complex observation, we used the noise and velocity uncertainty as accuracy indicators to evaluate the noise reduction effects of the three methods. The results show that WD can only extract a part of the white noise, while EMD and GA-VMD can completely remove the white noise. GA-VMD can reduce the flicker noise to the range of 0 to 6 mm/a0.25. For the velocity uncertainty, the average gain rates of GA-VMD relative to the WD and EMD are 69% and 15.33%, respectively. GA-VMD has an average correction rate of 79.89% and 84.46% for the velocity uncertainty and flicker noise of GNSS coordinate time series.

    Conclusions 

    Therefore, GA-VMD is the most effective one among the three noise reduction methods, which can effectively reduce the noise in the GNSS time series and improve its accuracy. However, in this paper, we only discussed the effect of GA on VMD parameter optimization without comparing it with other methods. Hence, it will be the key for studying the advantages and shortcomings of those optimization algorithms in the selection of VMD, and improving the accuracy on the GNSS time series in the future.

  • [1]
    王敏, 沈正康, 董大南. 非构造形变对GPS连续站位置时间序列的影响和修正[J]. 地球物理学报, 2005, 48(5): 1045-1052. doi: 10.3321/j.issn:0001-5733.2005.05.010

    Wang Min, Shen Zhengkang, Dong Da􀆳nan. Effects of No-Tectonic Crustal Deformation on Continuous GPS Position Times Series and Correction to Them[J]. Chinese Journal of Geophysics, 2005, 48(5): 1045-1052 doi: 10.3321/j.issn:0001-5733.2005.05.010
    [2]
    姜卫平, 李昭, 刘万科, 等. 顾及非线性变化的地球参考框架建立与维持的思考[J]. 武汉大学学报(信息科学版), 2010, 35(6): 665-669. http://ch.whu.edu.cn/article/id/962

    Jiang Weiping, Li Zhao, Liu Wanke, et al. Some Thoughts on Establishment and Maintenance of Terrestrial Reference Frame Considering Non-linear Variation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 665-669 http://ch.whu.edu.cn/article/id/962
    [3]
    姜卫平, 王锴华, 李昭, 等. GNSS坐标时间序列分析理论与方法及展望[J]. 武汉大学学报(信息科学版), 2018, 43(12): 2112-2123. doi: 10.13203/j.whugis20180333

    Jiang Weiping, Wang Kaihua, Li Zhao, et al. Prospect and Theory of GNSS Coordinate Time Series Analysis[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2112-2123 doi: 10.13203/j.whugis20180333
    [4]
    李昭, 姜卫平, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列噪声模型建立与分析[J]. 测绘学报, 2012, 41(4): 496-503. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201204006.htm

    Li Zhao, Jiang Weiping, Liu Hongfei, et al. Noise Model Establishment and Analysis of IGS Reference Station Coordinate Time Series Inside China[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(4): 496-503 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201204006.htm
    [5]
    鲁铁定, 谢建雄. EEMD-多尺度排列熵的GPS高程时间序列降噪方法[J]. 大地测量与地球动力学, 2021, 41(2): 111-115. doi: 10.14075/j.jgg.2021.02.001

    Lu Tieding, Xie Jianxiong. EEMD-Multiscale Permutation Entropy Noise Reduction Method for GPS Elevation Time Series[J]. Journal of Geodesy and Geodynamics, 2021, 41(2): 111-115 doi: 10.14075/j.jgg.2021.02.001
    [6]
    Wu H, Li K, Shi W Z, et al. A Wavelet-Based Hybrid Approach to Remove the Flicker Noise and the White Noise from GPS Coordinate Time Series[J]. GPS Solutions, 2015, 19(4): 511-523. doi: 10.1007/s10291-014-0412-6
    [7]
    尹晖, 朱锋. 时序数据去噪中的小波策略及评价指标[J]. 武汉大学学报(信息科学版), 2012, 37(11): 1374-1377. http://ch.whu.edu.cn/article/id/377

    Yin Hui, Zhu Feng. Wavelet Strategies and Evaluation Indicator in Time Series Data Denoising[J]. Geomatics and Information Science of Wuhan University, 2012, 37(11): 1374-1377 http://ch.whu.edu.cn/article/id/377
    [8]
    张双成, 何月帆, 李振宇, 等. EMD用于GPS时间序列降噪分析[J]. 大地测量与地球动力学, 2017, 37(12): 1248-1252. doi: 10.14075/j.jgg.2017.12.009

    Zhang Shuangcheng, He Yuefan, Li Zhenyu, et al. EMD for Noise Reduction of GPS Time Series[J]. Journal of Geodesy and Geodynamics, 2017, 37(12): 1248-1252 doi: 10.14075/j.jgg.2017.12.009
    [9]
    贾瑞生, 赵同彬, 孙红梅, 等. 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58(3): 1013-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503026.htm

    Jia Ruisheng, Zhao Tongbin, Sun Hongmei, et al. Micro-seismic Signal Denoising Method Based on Empirical Mode Decomposition and Independent Component Analysis[J]. Chinese Journal of Geophysics, 2015, 58(3): 1013-1023 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503026.htm
    [10]
    霍炬, 王石静, 杨明, 等. 基于小波变换阈值法处理光纤陀螺信号噪声[J]. 中国惯性技术学报, 2008, 16(3): 343-347. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ200803021.htm

    Huo Ju, Wang Shijing, Yang Ming, et al. Noise Processing of FOG Signal Based on Wavelet Threshold-Value[J]. Journal of Chinese Inertial Technology, 2008, 16(3): 343-347 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXJ200803021.htm
    [11]
    杨国华, 张风霜, 武艳强, 等. GPS基准站坐标分量噪声的时间序列与分类特征[J]. 国际地震动态, 2007, 37(7): 80-86. doi: 10.3969/j.issn.0253-4975.2007.07.012

    Yang Guohua, Zhang Fengshuang, Wu Yanqiang, et al. Time Sequences of Noise of the Coordinate Component of GPS Reference Stations and Its Classified Characteristics[J]. Recent Developments in World Seismology, 2007, 37(7): 80-86 doi: 10.3969/j.issn.0253-4975.2007.07.012
    [12]
    马俊, 曹成度, 姜卫平, 等. 利用小波包系数信息熵去除GNSS站坐标时间序列有色噪声[J]. 武汉大学学报(信息科学版), 2021, 46(9): 1309-1317. doi: 10.13203/j.whugis20190353

    Ma Jun, Cao Chengdu, Jiang Weiping, et al. Elimination of Colored Noise in GNSS Station Coordinate Time Series by Using Wavelet Packet Coefficient Information Entropy[J]. Geomatics and Information Science of Wuhan University, 2021, 46(9): 1309-1317 doi: 10.13203/j.whugis20190353
    [13]
    李宗春, 邓勇, 张冠宇, 等. 变形测量异常数据处理中小波变换最佳级数的确定[J]. 武汉大学学报(信息科学版), 2011, 36(3): 285-288. http://ch.whu.edu.cn/article/id/496

    Li Zongchun, Deng Yong, Zhang Guanyu, et al. Determination of Best Grading of Wavelet Transform in Deformation Measurement Data Filtering[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 285-288 http://ch.whu.edu.cn/article/id/496
    [14]
    Huang N, Shen Z, Long S, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-stationary Time Series Analysis[J]. Proceedings of the Royal Society of London Series A: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [15]
    钱文龙, 鲁铁定, 贺小星, 等. GPS高程时间序列降噪分析的改进EMD方法[J]. 大地测量与地球动力学, 2020, 40(3): 242-246. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202003005.htm

    Qian Wenlong, Lu Tieding, He Xiaoxing, et al. A New Method for Noise Reduction Analysis of GPS Elevation Time Series Based on EMD[J]. Journal of Geodesy and Geodynamics, 2020, 40(3): 242-246 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202003005.htm
    [16]
    Wu Z, Huang N. Ensemble Empirical Mode Decomposition: A Noise-Assisted Data Analysis Method[J]. Advances in Adaptive Data Analysis, 2009, 1(1), DOI: 10. 1142/S1793536909000047.
    [17]
    Dragomiretskiy K, Zosso D. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544. doi: 10.1109/TSP.2013.2288675
    [18]
    鲁铁定, 谢建雄. 变分模态分解结合样本熵的变形监测数据降噪[J]. 大地测量与地球动力学, 2021, 41(1): 1-6. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202101001.htm

    Lu Tieding, Xie Jianxiong. Deformation Monitoring Data De-noising Method Based on Variational Mode Decomposition Combined with Sample Entropy[J]. Journal of Geodesy and Geodynamics, 2021, 41(1): 1-6 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202101001.htm
    [19]
    罗亦泳, 黄城, 张静影. 基于变分模态分解的变形监测数据去噪方法[J]. 武汉大学学报(信息科学版), 2020, 45(5): 784-790. doi: 10.13203/j.whugis20180437

    Luo Yiyong, Huang Cheng, Zhang Jingying. Denoising Method of Deformation Monitoring Data Based on Variational Mode Decomposition[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 784-790 doi: 10.13203/j.whugis20180437
    [20]
    黄维新, 刘敦文. 基于变分模态分解和独立成分分析的矿山微震信号降噪[J]. 振动与冲击, 2019, 38(4): 56-63. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201904010.htm

    Huang Weixin, Liu Dunwen. Mine Microseismic Signal Denosing Based on Variational Mode Decomposition and Independent Component Analysis[J]. Journal of Vibration and Shock, 2019, 38(4): 56-63 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201904010.htm
    [21]
    张杏莉, 卢新明, 贾瑞生, 等. 基于变分模态分解及能量熵的微震信号降噪方法[J]. 煤炭学报, 2018, 43(2): 356-363. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802008.htm

    Zhang Xingli, Lu Xinming, Jia Ruisheng, et al. Micro-seismic Signal Denoising Method Based on Variational Mode Decomposition and Energy Entropy[J]. Journal of China Coal Society, 2018, 43(2): 356-363 https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201802008.htm
    [22]
    Ram R, Mohanty M N. Comparative Analysis of EMD and VMD Algorithm in Speech Enhancement[J]. International Journal of Natural Computing Research, 2017, 6(1): 17-35.
    [23]
    郑义, 岳建海, 焦静, 等. 基于参数优化变分模态分解的滚动轴承故障特征提取方法[J]. 振动与冲击, 2021, 40(1): 86-94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101013.htm

    Zheng Yi, Yue Jianhai, Jiao Jing, et al. Fault Feature Extraction Method of Rolling Bearing Based on Parameter Optimized VMD[J]. Journal of Vibration and Shock, 2021, 40(1): 86-94 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202101013.htm
    [24]
    Habob A A, Dobre O A, Armada A G, et al. Task Scheduling for Mobile Edge Computing Using Genetic Algorithm and Conflict Graphs[J]. IEEE Transactions on Vehicular Technology, 2020, 69(8): 8805-8819.
    [25]
    吉根林. 遗传算法研究综述[J]. 计算机应用与软件, 2004, 21(2): 69-73. https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201811001.htm

    Ji Genlin. Survey on Genetic Algorithm[J]. Computer Applications and Software, 2004, 21(2): 69-73 https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201811001.htm
    [26]
    谢建峰, 杨啟明, 戴树岭, 等. 基于强化遗传算法的无人机空战机动决策研究[J]. 西北工业大学学报, 2020, 38(6): 1330-1338. https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202006024.htm

    Xie Jianfeng, Yang Qiming, Dai Shuling, et al. Air Combat Maneuver Decision Based on Reinforcement Genetic Algorithm[J]. Journal of Northwestern Polytechnical University, 2020, 38(6): 1330-1338 https://www.cnki.com.cn/Article/CJFDTOTAL-XBGD202006024.htm
    [27]
    洪晓翠, 段礼祥, 杨晓光, 等. 智能优化算法在机械故障诊断领域的应用综述[J]. 测控技术, 2021, 40(7): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202107001.htm

    Hong Xiaocui, Duan Lixiang, Yang Xiaoguang, et al. Review on the Application of Intelligent Optimization Algorithms in Mechanical Fault Diagnosis[J]. Measurement & Control Technology, 2021, 40(7): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-IKJS202107001.htm
    [28]
    蔡宇, 欧阳缮, 廖可非. 基于遗传算法优化参数的VMD-WVD的无人机微动特征时频分析方法[J]. 桂林电子科技大学学报, 2020, 40(2): 102-107. https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202002003.htm

    Cai Yu, Ouyang Shan, Liao Kefei. Time-Frequency Analysis of Micro-doppler Signature of UAV Based on VMD-WVD Optimized by Genetic Algorithms[J]. Journal of Guilin University of Electronic Technology, 2020, 40(2): 102-107 https://www.cnki.com.cn/Article/CJFDTOTAL-GLDZ202002003.htm
    [29]
    纪洁, 胡汉, 高远, 等. 基于遗传算法优化参数的支持向量机风电功率预测[J]. 电子测试, 2020(21): 32-35. https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202021011.htm

    Ji Jie, Hu Han, Gao Yuan, et al. The Wind Power Prediction Based on the Genetic Algorithm to Optimize Parameters of Support Vector Machine[J]. Electronic Test, 2020(21): 32-35 https://www.cnki.com.cn/Article/CJFDTOTAL-WDZC202021011.htm
    [30]
    刘嘉敏, 彭玲, 刘军委, 等. 遗传算法VMD参数优化与小波阈值轴承振动信号去噪分析[J]. 机械科学与技术, 2017, 36(11): 1695-1700. https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201711010.htm

    Liu Jiamin, Peng Ling, Liu Junwei, et al. Denoising Analysis of Bearing Vibration Signal Based on Genetic Algorithm and Wavelet Threshold VMD[J]. Mechanical Science and Technology for Aerospace Engineering, 2017, 36(11): 1695-1700 https://www.cnki.com.cn/Article/CJFDTOTAL-JXKX201711010.htm
    [31]
    边杰. 基于遗传算法参数优化的变分模态分解结合1.5维谱的轴承故障诊断[J]. 推进技术, 2017, 38(7): 1618-1624. https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201707024.htm

    Bian Jie. Fault Diagnosis of Bearing Combining Parameter Optimized Variational Mode Decomposition Based on Genetic Algorithm with 1.5-Dimensional Spectrum[J]. Journal of Propulsion Technology, 2017, 38(7): 1618-1624 https://www.cnki.com.cn/Article/CJFDTOTAL-TJJS201707024.htm
    [32]
    何勇, 王红, 谷穗. 一种基于遗传算法的VMD参数优化轴承故障诊断新方法[J]. 振动与冲击, 2021, 40(6): 184-189. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106025.htm

    He Yong, Wang Hong, Gu Sui. New Fault Diagnosis Approach for Bearings Based on Parameter Optimized VMD and Genetic Algorithm[J]. Journal of Vibration and Shock, 2021, 40(6): 184-189 https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202106025.htm
    [33]
    唐贵基, 王晓龙. 参数优化变分模态分解方法在滚动轴承早期故障诊断中的应用[J]. 西安交通大学学报, 2015, 49(5): 73-81. https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201505012.htm

    Tang Guiji, Wang Xiaolong. Parameter Optimized Variational Mode Decomposition Method with Application to Incipient Fault Diagnosis of Rolling Bearing[J]. Journal of Xi􀆳an Jiaotong University, 2015, 49(5): 73-81 https://www.cnki.com.cn/Article/CJFDTOTAL-XAJT201505012.htm
    [34]
    Aziz W, Arif M. Multiscale Permutation Entropy of Physiological Time Series[C]// Pakistan Section Multitopic Conference, Karachi, Pakistan, 2007.
    [35]
    Bandt C, Pompe B. Permutation Entropy: A Natural Complexity Measure for Time Series[J]. Physical Review Letters, 2002, 88(17): 174102.
    [36]
    嵇昆浦, 沈云中. 含缺值GNSS基准站坐标序列的非插值小波分析与信号提取[J]. 测绘学报, 2020, 49(5): 537-546. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202005001.htm

    Ji Kunpu, Shen Yunzhong. Dyadic Wavelet Transform and Signal Extraction of GNSS Coordinate Time Series with Missing Data[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49(5): 537-546 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202005001.htm
    [37]
    黄智刚, 吕虎波, 林一庚, 等. 基于CEEMDAN-MPE算法的隧道爆破地震波信号降噪方法及应用[J]. 爆破, 2020, 37(4): 138-144. https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO202004023.htm

    Huang Zhigang, Lü Hubo, Lin Yigeng, et al. Denoising Method of Tunnel Blasting Seismic Wave Signal Based on CEEMDAN-MPE Algorithm and Its Application[J]. Blasting, 2020, 37(4): 138-144 https://www.cnki.com.cn/Article/CJFDTOTAL-BOPO202004023.htm
    [38]
    彭宇. GNSS高精度垂向分量探寻区域地表形变机制及地球深部构造运动信号[D]. 上海: 华东师范大学, 2019.

    Peng Yu. Explorating Mechanism of the Regional Surface Deformation and the Deep Tectonic Signals Using High-Precision GNSS Vertical Solutions[D]. Shanghai: East China Normal University, 2019
    [39]
    明锋, 杨元喜, 曾安敏, 等. 中国区域IGS站高程时间序列季节性信号及长期趋势分析[J]. 中国科学: 地球科学, 2016, 46(6): 834-844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606008.htm

    Ming Feng, Yang Yuanxi, Zeng Anmin, et al. Seasonal Signal and Long-Term Trend Analysis of Elevation Time Series of IGS Station in China Area[J]. Scientia Sinica (Terrae), 2016, 46(6): 834-844 https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606008.htm
    [40]
    胡顺强, 王坦, 管雅慧, 等. 利用GPS和水文负载模型研究云南地区垂向季节性波动变化和构造变形[J]. 地球物理学报, 2021, 64(8): 2613-2630. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202108004.htm

    Hu Shunqiang, Wang Tan, Guan Yahui, et al. Analyzing the Seasonal Fluctuation and Vertical Deformation in Yunnan Province Based on GPS Measurement and Hydrological Loading Model[J]. Chinese Journal of Geophysics, 2021, 64(8): 2613-2630 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX202108004.htm
    [41]
    黄立人. GPS基准站坐标分量时间序列的噪声特性分析[J]. 大地测量与地球动力学, 2006, 26(2): 31-33. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200602005.htm

    Huang Liren. Noise Properties in Time Series of Coordinate Component at GPS Fiducial Stations[J]. Journal of Geodesy and Geodynamics, 2006, 26(2): 31-33 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB200602005.htm
    [42]
    占伟, 黄立人, 刘志广, 等. 数据缺失对GNSS时间序列分析的影响[J]. 大地测量与地球动力学, 2013, 33(2): 49-53. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201302012.htm

    Zhan Wei, Huang Liren, Liu Zhiguang, et al. Effect of Data Defect on Analyzing GNSS Time Series[J]. Journal of Geodesy and Geodynamics, 2013, 33(2): 49-53 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201302012.htm
    [43]
    张卫柱, 严薇, 孙亮, 等. 北斗全球导航卫星的运动学解算方法研究[J]. 测绘与空间地理信息, 2014, 37(8): 50-52. https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201408015.htm

    Zhang Weizhu, Yan Wei, Sun Liang, et al. Research on Kinematics Parameters Calculation Algorithms of Compass Global Navigation Satellite[J]. Geomatics & Spatial Information Technology, 2014, 37(8): 50-52 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201408015.htm
    [44]
    安云飞. 一种用于BDS-3接收机的分段Hermite插值方法[J]. 全球定位系统, 2020, 45(4): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW202004016.htm

    An Yunfei. A Piecewise Hermite Interpolation Method for BDS-3 Receiver[J]. GNSS World of China, 2020, 45(4): 95-100 https://www.cnki.com.cn/Article/CJFDTOTAL-QUDW202004016.htm
    [45]
    Bos M S, Fernandes R S, Williams S P, et al. Fast Error Analysis of Continuous GNSS Observations with Missing Data[J]. Journal of Geodesy, 2013, 87(4): 351-360.
    [46]
    Williams S D P, Bock Y, Fang P, et al. Error Analysis of Continuous GPS Position Time Series[J]. Journal of Geophysical Research: Solid Earth, 2004, 109(B3), DOI: 10.1029/2003JB002741.
    [47]
    乔学军, 王琪, 吴云, 等. 中国大陆GPS基准站的时间序列特征[J]. 武汉大学学报(信息科学版), 2003, 28(4): 413-416. http://ch.whu.edu.cn/article/id/4838

    Qiao Xuejun, Wang Qi, Wu Yun, et al. Time Series Characteristic of GPS Fiducial Stations in China[J]. Geomatics and Information Science of Wuhan University, 2003, 28(4): 413-416 http://ch.whu.edu.cn/article/id/4838
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views (1481) PDF downloads (129) Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return