KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
Citation: KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856

Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data

Funds: 

The National Natural Science Foundation of China 41104021

The National Natural Science Foundation of China 11173026

The National Natural Science Foundation of China 41574003

the West Light Foundation of the Chinese Academy of Sciences 2012ZD150

the West Light Foundation of the Chinese Academy of Sciences 2013YB10

the International Global Monitoring and Assessment System (iGMAS) 

the Public Welfare Science Research Program of Surveying, Mapping and Geoinformation 

the Science and Technology Innovation Project of Shaanxi Administration of Surveying, Mapping and Geoinformation 

More Information
  • Author Bio:

    KONG Yao, PhD, specializes in GNSS orbit determination. E-mail: michale08@163.com

  • Received Date: March 28, 2015
  • Published Date: June 04, 2017
  • Satellite Laser Ranging (SLR), is completely independent of microwave measurement, and offers an indispensable tool for external validation of GNSS broadcast ephemeris. Currently, all satellites in the BeiDou Satellite Navigation System (BDS) are equipped with laser ranging reflector arrays enabling high-precision two way ranging measurements. Based on SLR data from BeiDou satellites collected in the period April 2013 to July 2014, the broadcast ephemeris of BDS were validated using SLR data. The approximate equation of SLR residual for the BDS GEO satellites were derived, and the SLR residual characteristic for BDS IGSO and MEO satellites under different attitude modes were analyzed. The validation results show that, the orbit error of C01, C08, C10 and C11 are 0.97 m, 0.43 m, 0.41 m and 0.41 m respectively.
  • [1]
    毛悦, 贾小林, 孙付平.利用SLR数据进行广播星历精度评估[J].测绘科学技术学报, 2007, 24(4): 263-266 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC200704009.htm

    Mao Yue, Jia Xiaolin, Sun Fuping. Validation Satellite Broadcast Ephemeris by SLR data [J]. Journal of Geomatics Science and Technology, 2007, 24(4): 263-266 http://www.cnki.com.cn/Article/CJFDTOTAL-JFJC200704009.htm
    [2]
    Degnan J J, Pavlis E C. Laser Ranging to GPS Satellites with Centimeter Accuracy[J]. GPS World, 1994, 5(9): 62-70 http://www.academia.edu/18207495/Laser_Ranging_to_GPS_Satellites_with_Centimeter_Accuracy
    [3]
    Watkins M M, Bar-Sever Y E, Yuan D N. Evaluation of IGS GPS Orbits with Satellite Laser Ranging[C], IGS Analysis Center Workshop, Pasadena, CA, 1996
    [4]
    Zhu S Y, Reigber C, Kang Z. Apropos Laser Tracking to GPS Satellites[J]. Journal of Geodesy, 1997, 71(7): 423-431 doi: 10.1007/s001900050110
    [5]
    Eanes R J, Nerem R S, Abusali P A M. GLONASS Orbit Determination at the Center for Space Research[C]. International GLONASS Experiment Workshop, Pasadena, CA, 1999
    [6]
    Appleby G, Otsubo T. Comparison of SLR Measurements and Orbits with GLONASS and GPS Microwave Orbits[C], International Workshop on Laser Ranging, Matera Italy, 2000
    [7]
    Urschl C, Beutler G, Gurtner W. Validation of GNSS Orbits Using SLR Observation[J]. Advances in Space Research, 2005, 36(3): 412-417 doi: 10.1016/j.asr.2005.03.021
    [8]
    Urschl C, Beutler G, Gurtner W. Contribution of SLR Tracking Data to GNSS Orbit Determination[J]. Advances in Space Research, 2007, 39(10): 1 515-1 523 https://www.researchgate.net/publication/223436456_Contribution_of_SLR_tracking_data_to_GNSS_orbit_determination
    [9]
    Montenbruck O, Steigenberger P, Kirchner G. GNSS Satellite Orbit Validation Using Satellite Laser Ranging[C]. International Workshop on Laser Ranging, Fujiyoshida Japan, 2013
    [10]
    北斗卫星导航系统空间信号接口控制文件2. 0版[R]. 北京: 中国卫星导航系统管理办公室, 2013

    BeiDou Navigation Satellite System Signal in Space Interface Control Document, Version 2.0 [R].Beijing: China Satellite Navigation Office, 2013
    [11]
    Dach R, Hugentobler U, Fridez P, et al. Bernese GPS Software, Version 5.2[OL]. http://ww.bernese.unibe.ch/do/DOCU52.pdf.2015
    [12]
    Montenbruck O, Steigenberger P. The BeiDou Navigation Message[J]. Journal of Global Positioning Systems, 2013, 12(1): 1-12 doi: 10.5081/jgps
    [13]
    Pearlman M R, Degnan J J, Bosworth J M. The International Laser Ranging Service[J]. Advances in Space Research, 2002, 30(2): 135-143 doi: 10.1016/S0273-1177(02)00277-6
    [14]
    魏子卿, 葛茂荣.GPS相对定位的数学模型[M].北京, 测绘出版

    Wei Ziqing, Ge Maorong. The Model of GPS Relative Positioning[M]. Beijing: Publishing House of Surveying and Mapping, 1998
    [15]
    李济生.人造卫星精密轨道确定[M].北京:解放军出版社, 1995

    Li Jisheng. Satellite Precise Orbit Determination[M]. Beijing: Army Publishing House, 1995
    [16]
    Kouba. A Guide to Using International GNSS Service (IGS) Products[EB/OL].http://igs.cb.jpl.nasa.gov/resource/pubs/Guide to Using IGS product.pdf, 2003
    [17]
    Guo J, Zhao Q, Geng T, et al. Precise Orbit Determination for COMPASS IGSO Satellites During Yaw Maneuvers[C]. China Satellite Navigation Conference, Wuhan, China, 2013
    [18]
    Wang W, Chen G, Guo S, et al. A Study on the Beidou IGSO/MEO Satellite Orbit Determination and Prediction of the Different Yaw Control Mode[C]. China Satellite Navigation Conference, Wuhan, China, 2013
    [19]
    Lou Yidong, Liu Yang, Shi Chuang, et al. Precise Orbit Determination of BeiDou Constellation Based on BETS and MGEX Network[J]. Scientific Reports, 2014, DOI: 10.1038/srep04692
  • Related Articles

    [1]GAO Yang, SHA Hai, CHU Henglin, WANG Mengli. Non-ideality Characteristic Analysis and Receiver Design Constraints Recommendation for BDS B1C and B2a Signals[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 587-592. DOI: 10.13203/j.whugis20200568
    [2]LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052
    [3]XIE Ping, ZHANG Shuangxi, WANG Haihong, WU Tengfei, CAI Jianfeng. Cross Wavelet Analysis on the Influence of the Three Gorges Dam Impounding on the Reservoir Precipitation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 821-829, 907. DOI: 10.13203/j.whugis20180410
    [4]YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
    [5]XU Xiyu, WANG Zhenzhan, XU Ke. Application of Laser Tracking Technology to Absolute Calibration of Space-borne Radar Altimeters[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 103-108. DOI: 10.13203/j.whugis20140542
    [6]WENG Yinkan, LI Song, YANG Jinling, YI Hong, WANG Hong, MA Yue. Fast Solution to the RCS of Corner Reflector for the SAR Radiometric Calibration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1551-1556. DOI: 10.13203/j.whugis20130613
    [7]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [8]JIN Taoyong, HU Minzhang, JIANG Tao, ZHANG Shoujian. Cross-Calibration and Errors Analysis of Ionosphere Correction in Satellite Altimetry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 658-661.
    [9]WEN Xingping, HU Guangdao, YANG Xiaofeng. Cross Calibration of CBERS-02 CCD Image Based on the Pseudo-invariant Reflectance Targets[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 409-413.
    [10]SUN Zhongmiao, XIA Zheren, LI Yingchun. Cross-Coupling Correction for LaCoste&Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 883-886.
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return