ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and Temporal Characteristics of AOD and Meteorological Factors in China During the Period of Public Health Emergencies[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2019-2032. DOI: 10.13203/j.whugis20210209
Citation: ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and Temporal Characteristics of AOD and Meteorological Factors in China During the Period of Public Health Emergencies[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2019-2032. DOI: 10.13203/j.whugis20210209

Spatial and Temporal Characteristics of AOD and Meteorological Factors in China During the Period of Public Health Emergencies

More Information
  • Received Date: October 19, 2022
  • Available Online: November 29, 2023
  • Objectives 

    In order to explore the impact of the decrease of human activities on the air quality in China during the period of the public health emergencies in 2019, the temporal and spatial abnormal changes of aerosol optical depth (AOD), precipitable water vapor (PWV) and temperature (T) are analyzed, and the impact of human activities on the air quality is revealed.

    Methods 

    First, the accuracy of AOD, PWV and T is verified by comparing with AOD provided by aerosol robotic network and PWV and T provided by radiosonde. Second, we analyze the long-term trends of AOD, PWV and T during the weekend and the week, and find that human activities have a certain impact on the air quality. Third, the temporal and spatial changes of AOD, PWV and T during the period of public health emergencies are studied, which confirmed that there is a good correlation between human activities and air quality. Finally, 184 cities of different grades in China are selected for further analysis to determine the impact of population density on AOD, PWV and T, and further reveal the specific response relationship between human activities and air quality.

    Results 

    Through the verification of the accuracy of the used data, it is found that the selected data have high accuracy, which can be used in this experimental study. By analyzing the PWV, AOD and T changes in public health emergencies, it is found that PWV, AOD and T are all affected.

    Conclusions 

    Due to the influence of public health emergencies, AOD, PWV and T show different trends. At the same time, it is found that the main reason for this phenomenon is the influence of the intensity of human activities.

  • [1]
    Zhang K N, de Leeuw G, Yang Z Q, et al. The Impacts of the COVID-19 Lockdown on Air Quality in the Guanzhong Basin, China[J]. Remote Sensing, 2020, 12(18): 3042. doi: 10.3390/rs12183042
    [2]
    乐旭, 雷亚栋, 周浩, 等. 新冠疫情期间中国人为碳排放和大气污染物的变化[J]. 大气科学学报, 2020, 43(2): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202002001.htm

    Yue Xu, Lei Yadong, Zhou Hao, et al. Changes of Anthropogenic Carbon Emissions and Air Pollutants During the COVID-19 Epidemic in China[J]. Transactions of Atmospheric Sciences, 2020, 43(2): 265-274. https://www.cnki.com.cn/Article/CJFDTOTAL-NJQX202002001.htm
    [3]
    Guo J P, Xia F, Zhang Y, et al. Impact of Diurnal Variability and Meteorological Factors on the PM2.5‑AOD Relationship: Implications for PM2.5 Remote Sensing[J]. Environmental Pollution, 2017, 221: 94-104. doi: 10.1016/j.envpol.2016.11.043
    [4]
    Zheng Y, Che H Z, Xia X G, et al. Five-Year Observation of Aerosol Optical Properties and Its Radiative Effects to Planetary Boundary Layer During Air Pollution Episodes in North China: Intercomparison of a Plain Site and a Mountainous Site in Beijing[J]. The Science of the Total Environment, 2019, 674: 140-158. doi: 10.1016/j.scitotenv.2019.03.418
    [5]
    Sarangi C, Tripathi S N, Kanawade V P, et al. Investigation of the Aerosol–Cloud–Rainfall Association over the Indian Summer Monsoon Region[J]. Atmospheric Chemistry and Physics, 2017, 17(8): 5185-5204. doi: 10.5194/acp-17-5185-2017
    [6]
    Li Z Q, Guo J P, Ding A J, et al. Aerosol and Boundary-Layer Interactions and Impact on Air Quality[J]. National Science Review, 2017, 4(6): 810-833. doi: 10.1093/nsr/nwx117
    [7]
    von Schneidemesser E, Monks P S, Allan J D, et al. Chemistry and the Linkages Between Air Quality and Climate Change[J]. Chemical Reviews, 2015, 115(10): 3856-3897. doi: 10.1021/acs.chemrev.5b00089
    [8]
    Kong L, Tang X, Zhu J, et al. A 6-Year-Long (2013—2018) High-Resolution Air Quality Reanalysis Dataset in China Based on the Assimilation of Surface Observations from CNEMC[J]. Earth System Science Data, 2021, 13(2): 529-570. doi: 10.5194/essd-13-529-2021
    [9]
    Che H Z, Gui K, Xia X G, et al. Large Contribution of Meteorological Factors to Inter-decadal Changes in Regional Aerosol Optical Depth[J]. Atmospheric Chemistry and Physics, 2019, 19(16): 10497-10523. doi: 10.5194/acp-19-10497-2019
    [10]
    Bevis M, Businger S, Herring T A, et al. GPS Meteorology: Remote Sensing of Atmospheric Water Vapor Using the Global Positioning System[J]. Journal of Geophysical Research, 1992, 97(D14): 15787. doi: 10.1029/92JD01517
    [11]
    Xu J Z, Ge X L, Zhang X H, et al. COVID-19 Impact on the Concentration and Composition of Submicron Particulate Matter in a Typical City of Northwest China[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089035. doi: 10.1029/2020GL089035
    [12]
    Yang Y, Ren L L, Li H M, et al. Fast Climate Responses to Aerosol Emission Reductions During the COVID-19 Pandemic[J]. Geophysical Research Letters, 2020, 47(19): e2020GL089788. doi: 10.1029/2020GL089788
    [13]
    Yang Y, Smith S J, Wang H L, et al. Variability, Timescales, and Nonlinearity in Climate Responses to Black Carbon Emissions[J]. Atmospheric Chemistry and Physics, 2019, 19(4): 2405-2420. doi: 10.5194/acp-19-2405-2019
    [14]
    Le T H, Wang Y, Liu L, et al. Unexpected Air Pollution with Marked Emission Reductions During the COVID-19 Outbreak in China[J]. Science, 2020, 369(6504): 702-706. doi: 10.1126/science.abb7431
    [15]
    Huang X, Ding A J, Gao J, et al. Enhanced Secon‑ dary Pollution Offset Reduction of Primary Emissions During COVID-19 Lockdown in China[J]. National Science Review, 2021, 8(2): nwaa137. doi: 10.1093/nsr/nwaa137
    [16]
    Nichol J E, Bilal M, Ali M A, et al. Air Pollution Scenario over China During COVID-19[J]. Remote Sensing, 2020, 12(13): 2100. doi: 10.3390/rs12132100
    [17]
    Filonchyk M, Hurynovich V, Yan H W, et al. Impact Assessment of COVID-19 on Variations of SO2, NO2, CO and AOD over East China[J]. Aerosol and Air Quality Research, 2020, 20(7): 1530-1540. doi: 10.4209/aaqr.2020.05.0226
    [18]
    Ding J S, Chen J P. Assessment of Empirical Troposphere Model GPT3 Based on NGL'S Global Troposphere Products[J]. Sensors, 2020, 20(13): 3631. doi: 10.3390/s20133631
    [19]
    Saastamoinen J. Atmospheric Correction for the Troposphere and Stratosphere in Radio Ranging Satellites[M]//Henriksen S W, Mancini A, Chovitz B H. The Use of Artificial Satellites for Geodesy. Washington D C: American Geophysical Union, 2013: 247-251.
    [20]
    Huang L K, Liu L L, Chen H, et al. An Improved Atmospheric Weighted Mean Temperature Model and Its Impact on GNSS Precipitable Water Vapor Estimates for China[J]. GPS Solutions, 2019, 23(2): 51. doi: 10.1007/s10291-019-0843-1
    [21]
    杨鹏飞, 赵庆志, 苏静, 等. 黄土高原地区PWV影响因素分析及精度评定[J]. 武汉大学学报(信息科学版), 2022, 47(9): 1470-1478. doi: 10.13203/j.whugis20200390

    Yang Pengfei, Zhao Qingzhi, Su Jing, et al. Analysis of Influencing Factors and Accuracy Evaluation of PWV in the Loess Plateau[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1470-1478. doi: 10.13203/j.whugis20200390
    [22]
    庞舒婷, 林莹晶, 汤晨光, 等. 基于MERRA2再分析资料的全球AOD和沙尘AOD空间分布及趋势[J]. 兰州大学学报(自然科学版), 2021, 57(1): 54-62. doi: 10.13885/j.issn.0455-2059.2021.01.008

    Pang Shuting, Lin Yingjing, Tang Chenguang, et al. Spatial Distribution and Trend of Global and Dust AOD Based on MERRA2 Reanalysis Data[J]. Journal of Lanzhou University (Natural Sciences), 2021, 57(1): 54-62. doi: 10.13885/j.issn.0455-2059.2021.01.008
    [23]
    Sun E W, Xu X F, Che H Z, et al. Variation in MERRA-2 Aerosol Optical Depth and Absorption Aerosol Optical Depth over China from 1980 to 2017[J]. Journal of Atmospheric and Solar-Terrestrial Physics, 2019, 186: 8-19. doi: 10.1016/j.jastp.2019.01.019
    [24]
    Green M, Kondragunta S, Ciren P B, et al. Comparison of GOES and MODIS Aerosol Optical Depth (AOD) to Aerosol Robotic Network (AERONET) AOD and IMPROVE PM2.5 Mass at Bondville, Illinois[J]. Journal of the Air and Waste Management Association (1995), 2009, 59(9): 1082-1091.
    [25]
    Ukhov A, Mostamandi S, da Silva A, et al. Assessment of Natural and Anthropogenic Aerosol Air Pollution in the Middle East Using MERRA-2, CAMS Data Assimilation Products, and High-Resolution WRF-chem Model Simulations[J]. Atmospheric Chemistry and Physics, 2020, 20(15): 9281-9310. doi: 10.5194/acp-20-9281-2020
    [26]
    Zhang Q, Ye J H, Zhang S C, et al. Precipitable Water Vapor Retrieval and Analysis by Multiple Data Sources: Ground-Based GNSS, Radio Occultation, Radiosonde, Microwave Satellite, and NWP Reanalysis Data[J]. Journal of Sensors, 2018, 2018: 3428303.
    [27]
    Tatem A J. WorldPop, Open Data for Spatial Demography[J]. Scientific Data, 2017, 4: 170004. doi: 10.1038/sdata.2017.4
    [28]
    Jiang C H, Xu T H, Wang S M, et al. Evaluation of Zenith Tropospheric Delay Derived from ERA5 Data over China Using GNSS Observations[J]. Remote Sensing, 2020, 12(4): 663. doi: 10.3390/rs12040663
    [29]
    Aliyu Y A, Botai J O. Appraising the Effects of Atmospheric Aerosols and Ground Particulates Concentrations on GPS-Derived PWV Estimates[J]. Atmospheric Environment, 2018, 193: 24-32. doi: 10.1016/j.atmosenv.2018.09.001
    [30]
    Klos A, Hunegnaw A, Teferle F N, et al. Statistical Significance of Trends in Zenith Wet Delay from Re-processed GPS Solutions[J]. GPS Solutions, 2018, 22(2): 51. doi: 10.1007/s10291-018-0717-y
    [31]
    Zhao Q Z, Ma X W, Yao W Q, et al. A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation[J]. Journal of Climate, 2020, 33(24): 10727-10741. doi: 10.1175/JCLI-D-19-0971.1
    [32]
    Nikolaidis R. Observation of Geodetic and Seismic Deformation with the Global Positioning System[D]. San Diego: University of California, 2002.
    [33]
    武曙光. 区域CORS站坐标时间序列特征分析[D]. 武汉: 武汉大学, 2017.

    Wu Shuguang. Characteristics of Coordinate Time Series from Regional CORS Stations[D]. Wuhan: Wuhan University, 2017.
    [34]
    吴英杰, 李玮, 王文君, 等. 基于降水量距平百分率的内蒙古地区干旱特征[J]. 干旱区研究, 2019, 36(4): 943-952. doi: 10.13866/j.azr.2019.04.19

    Wu Yingjie, Li Wei, Wang Wenjun, et al. Drought Characteristics in Inner Mongolia Based on Precipitation Anomaly Percentage[J]. Arid Zone Research, 2019, 36(4): 943-952. doi: 10.13866/j.azr.2019.04.19
    [35]
    Xia X G, Eck T F, Holben B N, et al. Analysis of the Weekly Cycle of Aerosol Optical Depth Using AERONET and MODIS Data[J]. Journal of Geophysical Research, 2008, 113(D14): D14217.
    [36]
    Lu X Y. Effectiveness of Government Enforcement in Driving Restrictions: A Case in Beijing, China[J]. Environmental Economics and Policy Studies, 2016, 18(1): 63-92. doi: 10.1007/s10018-015-0112-7
    [37]
    Chen J D, Wang B, Huang S, et al. The Influence of Increased Population Density in China on Air Pollution[J]. Science of the Total Environment, 2020, 735: 139456. doi: 10.1016/j.scitotenv.2020.139456
    [38]
    Xiao Q Y, Ma Z W, Li S S, et al. The Impact of Winter Heating on Air Pollution in China[J]. PLoS One, 2015, 10(1): e0117311. doi: 10.1371/journal.pone.0117311
    [39]
    Chen X F, Lv Y, Zhang W C, et al. Comparison Between Dust and Haze Aerosol Properties of the 2015 Spring in Beijing Using Ground-Based Sun Photometer and LiDAR[C]//Conference on Applied Optics and Photonics China, Beijing, China, 2015.
    [40]
    Mishra A K. Quantifying the Impact of Global Warming on Precipitation Patterns in India[J]. Meteorological Applications, 2019, 26(1): 153-160. doi: 10.1002/met.1749
    [41]
    Xu J, Li C, Shi H, et al. Analysis on the Impact of Aerosol Optical Depth on Surface Solar Radiation in the Shanghai Megacity, China[J]. Atmospheric Chemistry and Physics, 2011, 11(7): 3281-3289. doi: 10.5194/acp-11-3281-2011
    [42]
    Miao Y C, Liu S H, Zheng Y J, et al. Modeling the Feedback Between Aerosol and Boundary Layer Processes: A Case Study in Beijing, China[J]. Environmental Science and Pollution Research, 2016, 23(4): 3342-3357. doi: 10.1007/s11356-015-5562-8
    [43]
    Miao Y C, Guo J P, Liu S H, et al. Classification of Summertime Synoptic Patterns in Beijing and Their Associations with Boundary Layer Structure Affecting Aerosol Pollution[J]. Atmospheric Chemistry and Physics, 2017, 17(4): 3097-3110. doi: 10.5194/acp-17-3097-2017
    [44]
    Ma Y L, Zhao Y D, Liu J T, et al. Effects of Temperature Variation and Humidity on the Death of COVID-19 in Wuhan, China[J]. Science of the Total Environment, 2020, 724: 138226. doi: 10.1016/j.scitotenv.2020.138226
    [45]
    Fan C, Li Y, Guang J, et al. The Impact of the Control Measures During the COVID-19 Outbreak on Air Pollution in China[J]. Remote Sensing, 2020, 12(10): 1613. doi: 10.3390/rs12101613
  • Related Articles

    [1]GAO Zhuang, HE Xiufeng, CHANG Liang. Accuracy Analysis of GPT3 Model in China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 538-545. DOI: 10.13203/j.whugis20190202
    [2]ZHU Yongxing, TAN Shusen, REN Xia, JIA Xiaolin. Accuracy Analysis of GNSS Global Broadcast Ionospheric Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 768-775. DOI: 10.13203/j.whugis20180439
    [3]YANG Hui, HU Wusheng, YU Longfei, NIE Xichen, LI Hang. GHop: A New Regional Tropospheric Zenith Delay Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(2): 226-232. DOI: 10.13203/j.whugis20180167
    [4]HUA Zhonghao, LIU Lintao, LIANG Xinghui. An Assessment of GPT2w Model and Fusion of a Troposphere Model with in Situ Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(10): 1468-1473. DOI: 10.13203/j.whugis20150758
    [5]WANG Jungang, CHEN Junping, WANG Jiexian, ZHANG Jiejun, SONG Lei. Assessment of Tropospheric Delay Correction Models over China[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1656-1663. DOI: 10.13203/j.whugis20140696
    [6]Yao Yibin, Yu Chen, HU Yufeng, Liu Qiang. Using Non-meteorological Parameters Tropospheric Delay Estimation Model for Accelerating Convergence of PPP[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 188-192+221.
    [7]LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67.
    [8]DAI Wujiao, CHEN Zhaohua, KUANG Cuilin, CAI Changsheng. Modeling Regional Precise Tropospheric Delay[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 392-396.
    [9]LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58.
    [10]LIU Yanxiong, CHEN Yongqi, LIU Jingnan. Determination of Weighted Mean Tropospheric Temperature Using Ground Meteorological Measurement[J]. Geomatics and Information Science of Wuhan University, 2000, 25(5): 400-404.
  • Cited by

    Periodical cited type(1)

    1. 张学波,代勋韬,方标. 多接收阵合成孔径声纳距离-多谱勒成像方法. 武汉大学学报(信息科学版). 2019(11): 1667-1673 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return