LIU Xikang, DING Zhifeng, LI Yuan, LIU Zhiguang. Application of EMD to GNSS Time Series Periodic Term Processing[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 135-145. DOI: 10.13203/j.whugis20210029
Citation: LIU Xikang, DING Zhifeng, LI Yuan, LIU Zhiguang. Application of EMD to GNSS Time Series Periodic Term Processing[J]. Geomatics and Information Science of Wuhan University, 2023, 48(1): 135-145. DOI: 10.13203/j.whugis20210029

Application of EMD to GNSS Time Series Periodic Term Processing

More Information
  • Received Date: January 08, 2021
  • Available Online: February 07, 2023
  • Published Date: January 04, 2023
  •   Objectives  The position time series of global navigation satellite system (GNSS) contain rich tectonic and non-tectonic deformation information, and the complex components are difficult to accurately model and effectively separate non-tectonic information. It is very important to remove the non-tectonic deformation information for the accurate and effective application of the observation data.
      Methods  Empirical mode decomposition(EMD)is an adaptive time-frequency processing method to correct the period term of time series at 24 GNSS continuous stations and 2 mobile stations in Sichuan Province and Yunnan Province.
      Results  The results show that the correction of the period term is necessary, and the EMD method can extract the different frequency and amplitude period components adaptively according to its own characteristics of signal at each station. Compared with the original time series, the average root mean square error after correction is reduced significantly in N, E and U directions. And EMD method is more accurate and effective than harmonic model modification. We use the modified continuous station time series to simulate the mobile observations, and find that relatively reliable motion velocities can be obtained after an observation period of 5⁃6 years. The stability and reliability of EMD method are verified by correcting the period term of the mobile station with the actual continuous observation station at a close distance.
      Conclusions  This paper provides a reference and theoretical basis for the implementation of mobile GNSS observation and the correction of observation data.
  • [1]
    姜卫平, 李昭, 刘万科, 等. 顾及非线性变化的地球参考框架建立与维持的思考[J]. 武汉大学学报(信息科学版), 2010, 35(6): 665-669. http://ch.whu.edu.cn/article/id/962

    Jiang Weiping, Li Zhao, Liu Wanke, et al. Some Thoughts on Establishment and Maintenance of Terrestrial Reference Frame Considering Non-Linear Variation[J]. Geomatics and Information Science of Wuhan University, 2010, 35(6): 665-669. http://ch.whu.edu.cn/article/id/962
    [2]
    王敏, 沈正康. 中国大陆现今构造变形: 三十年的GPS观测与研究[J]. 中国地震, 2020, 36(4): 660-683. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202004003.htm

    Wang Min, Shen Zhengkang. Present-Day Tectonic Deformation in Continental China: Thirty Years of GPS Observation and Research[J]. Earthquake Research in China, 2020, 36(4): 660-683. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGZD202004003.htm
    [3]
    Dong D, Fang P, Bock Y, et al. Anatomy of Apparent Seasonal Variations from GPS‐Derived Site Position Time Series[J]. Journal of Geophysical Research, 2001, 107: 2075. doi: 10.1029/2001JB000573
    [4]
    姜卫平, 李昭, 刘鸿飞, 等. 中国区域IGS基准站坐标时间序列非线性变化的成因分析[J]. 地球物理学报, 2013, 56(7): 2228-2237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307009.htm

    Jiang Weiping, Li Zhao, Liu Hongfei, et al. Cause Analysis of the Non-Linear Variation of the IGS Reference Station Coordinate Time Series Inside China[J]. Chinese Journal of Geophysics, 2013, 56(7): 2228-2237. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201307009.htm
    [5]
    明锋, 杨元喜, 曾安敏, 等. 中国区域IGS站高程时间序列季节性信号及长期趋势分析[J]. 中国科学: 地球科学, 2016, 46(6): 834-844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606008.htm

    Ming Feng, Yang Yuanxi, Zeng Anmin, et al. Analysis of Seasonal Signals and Long-Term Trends in the Height Time Series of IGS Sites in China[J]. Sience China Earth Sciences, 2016, 46(6): 834-844. https://www.cnki.com.cn/Article/CJFDTOTAL-JDXK201606008.htm
    [6]
    Jiang W P, Yuan P, Chen H, et al. Annual Variations of Monsoon and Drought Detected by GPS: A Case Study in Yunnan, China[J]. Scientific Reports, 2017, 7(1): 5874. doi: 10.1038/s41598-017-06095-1
    [7]
    占伟, 李经纬. 云南GNSS时间序列共模分量提取分析[J]. 地震研究, 2021, 44(1): 56-63. doi: 10.3969/j.issn.1000-0666.2021.01.008

    Zhan Wei, Li Jingwei. Extraction and Analysis of the Common-Mode Component of GNSS Time Series in Yunnan[J]. Journal of Seismological Research, 2021, 44(1): 56-63. doi: 10.3969/j.issn.1000-0666.2021.01.008
    [8]
    张双成, 何月帆, 李振宇, 等. EMD用于GPS时间序列降噪分析[J]. 大地测量与地球动力学, 2017, 37(12): 1248-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201712009.htm

    Zhang Shuangcheng, He Yuefan, Li Zhenyu, et al. EMD for Noise Reduction of GPS Time Series[J]. Journal of Geodesy and Geodynamics, 2017, 37(12): 1248-1252. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201712009.htm
    [9]
    Davis J L, Wernicke B P, Tamisiea M E. On Seasonal Signals in Geodetic Time Series[J]. Journal of Geophysical Research: Solid Earth, 2012, 117: B01403.
    [10]
    Chen Q, Dam T V, Sneeuw N, et al. Singular Spectrum Analysis for Modeling Seasonal Signals from GPS Time Series[J]. Journal of Geodynamics, 2013, 72: 25-35. doi: 10.1016/j.jog.2013.05.005
    [11]
    周茂盛, 郭金运, 沈毅, 等. 基于多通道奇异谱分析的GNSS坐标时间序列共模误差的提取[J]. 地球物理学报, 2018, 61(11): 4383-4395. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201811006.htm

    Zhou Maosheng, Guo Jinyun, Shen Yi, et al. Extraction of Common Mode Errors of GNSS Coordinate Time Series Based on Multi-Channel Singular Spectrum Analysis[J]. Chinese Journal of Geophysics, 2018, 61(11): 4383-4395. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201811006.htm
    [12]
    Gruszczynska M, Rosat S, Klos A, et al. MultiChannel Singular Spectrum Analysis in the Estimates of Common Environmental Effects Affecting GPS Observations[J]. Pure and Applied Geophysics, 2018, 175(5): 1805-1822. doi: 10.1007/s00024-018-1814-0
    [13]
    张晶, 王小亚, 胡小工. 基于PCA方法的GPS台站时间序列分析[J]. 大地测量与地球动力学, 2019, 39(6): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201906012.htm

    Zhang Jing, Wang Xiaoya, Hu Xiaogong. Analysis of GPS Stations'Time Series Based on PCA Method[J]. Journal of Geodesy and Geodynamics, 2019, 39(6): 613-619. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201906012.htm
    [14]
    Huang N E, Shen Z, Long S R, et al. The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J]. Proceedings: Mathematical, Physical and Engineering Sciences, 1998, 454(1971): 903-995. doi: 10.1098/rspa.1998.0193
    [15]
    崔晨耕. 一种组合滤波法在GPS动态观测中的应用[J]. 甘肃科学学报, 2020, 32(3): 40-45.

    Cui Chengeng. Application of a Combined Method of Filtering to GPS Dynamic Observation Retraction[J]. Journal of Gansu Sciences, 2020, 32(3): 40-45.
    [16]
    Chen C H, Yeh T K, Liu J Y, et al. Surface Deformation and Seismic Rebound: Implications and Applications[J]. Surveys in Geophysics, 2011, 32(3): 291-313.
    [17]
    Chen C H, Wen S, Yeh T K, et al. Observation of Surface Displacements from GPS Analyses Before and After the Jiashian Earthquake (M=6.4) in Taiwan, China[J]. Journal of Asian Earth Sciences, 2013, 62: 662-671.
    [18]
    Chen C H, Wang C H, Wen S, et al. Anomalous Frequency Characteristics of Groundwater Level Before Major Earthquakes in Taiwan, China[J]. Hydrology and Earth System Sciences, 2013, 17(5): 1693-1703.
    [19]
    Feng W, Ren J W, Jiang Z S. GPS Station Short-Term Dynamic Characteristics of Micro Displacement Before Menyuan M 6.4 Earthquake[J]. Geo⁃desy and Geodynamics, 2016, 7(4): 237-244.
    [20]
    贾瑞生, 赵同彬, 孙红梅, 等. 基于经验模态分解及独立成分分析的微震信号降噪方法[J]. 地球物理学报, 2015, 58(3): 1013-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503026.htm

    Jia Ruisheng, Zhao Tongbin, Sun Hongmei, et al. Micro-Seismic Signal Denoising Method Based on Empirical Mode Decomposition and Independent Component Analysis[J]. Chinese Journal of Geophysics, 2015, 58(3): 1013-1023. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201503026.htm
    [21]
    罗飞雪, 戴吾蛟, 伍锡锈. 基于交叉证认的EMD滤波及其在GPS多路径效应中的应用[J]. 武汉大学学报(信息科学版), 2012, 37(4): 450-453. http://ch.whu.edu.cn/article/id/166

    Luo Feixue, Dai Wujiao, Wu Xixiu. EMD Filtering Based on Cross-Validation and Its Application in GPS Multipath[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 450-453. http://ch.whu.edu.cn/article/id/166
    [22]
    戴吾蛟, 丁晓利, 朱建军, 等. 基于经验模式分解的滤波去噪法及其在GPS多路径效应中的应用[J]. 测绘学报, 2006, 35(4): 321-327. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200604004.htm

    Dai Wujiao, Ding Xiaoli, Zhu Jianjun, et al. EMD Filter Method and Its Application in GPS Multipath[J]. Acta Geodaetica et Cartographica Sinica, 2006, 35(4): 321-327. https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB200604004.htm
    [23]
    鲁铁定, 钱文龙, 贺小星, 等. 一种确定分界IMF分量的改进EMD方法[J]. 大地测量与地球动力学, 2020, 40(7): 720-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202007012.htm

    Lu Tieding, Qian Wenlong, He Xiaoxing, et al. An Improved EMD Method for Determining Boundary IMF[J]. Journal of Geodesy and Geodynamics, 2020, 40(7): 720-725. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB202007012.htm
    [24]
    郭翔. EMD在GPS信号去噪中的应用研究[D]. 抚州: 东华理工大学, 2016.

    Guo Xiang. Research on GPS Date Denoising Based on EMD[D]. Fuzhou: East China University of Technology, 2016.
    [25]
    Herring T A, King R W, McClusky S C. GAMIT Reference Manual: GPS Analysis at MIT, Version 10.4 [R]. Cambridge: Massachusetts Institute of Technology, 2010.
    [26]
    van Dam T, Wahr J, Lavallée D. A Comparison of Annual Vertical Crustal Displacements from GPS and Gravity Recovery and Climate Experiment (GRACE) over Europe[J]. Journal of Geophysical Research, 2007, 112(B3): B03404.
    [27]
    刘任莉, 李建成, 姜卫平, 等. 联合GRACE与GPS比较山西省垂向地表形变[J]. 武汉大学学报(信息科学版), 2013, 38(4): 426-430. http://ch.whu.edu.cn/article/id/763

    Liu Renli, Li Jiancheng, Jiang Weiping, et al. Comparing Vertical Surface Displacements Using GRACE and GPS over Shanxi Province[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 426-430. http://ch.whu.edu.cn/article/id/763
    [28]
    占伟, 李斐, 朱爽, 等. 应用GPS连续观测修正流动观测垂向速率的分析与实验[J]. 武汉大学学报(信息科学版), 2016, 41(7): 963-968. doi: 10.13203/j.whugis20140251

    Zhan Wei, Li Fei, Zhu Shuang, et al. Analysis and Test of Correction to Vertical Velocity Measured by GPS Mobile Observation with Continuous Observation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 963-968. doi: 10.13203/j.whugis20140251
    [29]
    Zhan W, Li F, Hao W F, et al. Regional Characteristics and Influencing Factors of Seasonal Vertical Crustal Motions in Yunnan, China[J]. Geophysical Journal International, 2017, 210(3): 1295-1304.
    [30]
    李经纬, 占伟, 梁洪宝, 等. GPS垂向年周期运动的精确获取与方法评估[J]. 地震研究, 2020, 43(1): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202001012.htm

    Li Jingwei, Zhan Wei, Liang Hongbao, et al. Accurate Acquisition and Method Evaluation of GPS Annual Vertical Motion[J]. Journal of Seismological Research, 2020, 43(1): 95-100. https://www.cnki.com.cn/Article/CJFDTOTAL-DZYJ202001012.htm
    [31]
    Liang H B, Zhan W, Li J W. Vertical Surface Displacement of Mainland China from GPS Using the Multisurface Function Method[J]. Advances in Space Research, 2021, 68(12): 4898-4915.
  • Related Articles

    [1]HU Cancheng, WANG Changcheng, SHEN Peng. A New Landslide Deformation Monitoring Method with Polarimetric SAR Based on Polarimetric Likelihood Ratio Test[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1943-1950. DOI: 10.13203/j.whugis20200281
    [2]CHANG Yonglei, YANG Jie, LI Pingxiang, ZHAO Lingli, YU Jie. Automatic Bridge Recognition Method in High Resolution PolSAR Images Based on CFAR Detector[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 762-767. DOI: 10.13203/j.whugis20140828
    [3]LI Lan, CHEN Erxue, LI Zengyuan, FENG Qi, ZHAO Lei. K-Wishart Classifier for PolSAR Data and Its Performance Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(11): 1498-1504. DOI: 10.13203/j.whugis20140649
    [4]CHEN Jianhong, ZHAO Yongjun, LAI Tao, LIU Wei, HUANG Jie. Fast Non-local Means Filtering of SLC Fully PolSAR Image[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 629-634. DOI: 10.13203/j.whugis20140089
    [5]XIA Guisong, XUE Nan, WANG Zifeng, ZHANG Liangpei. Anisotropic Diffusion on Complex Tensor Fields for PolSAR Image Filtering[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1533-1538,1556. DOI: 10.13203/j.whugis20140630
    [6]HUANG Xiaodong, LIU Xiuguo, CHEN Qihao, CHEN Qi. An Integrated Multi\|characteristics Buildings Segmentation Model of PolSAR Images[J]. Geomatics and Information Science of Wuhan University, 2013, 38(4): 450-454.
    [7]YU Jie, LIU Limin, LI Xiaojuan, ZHAO Zheng. Applications of ICA for Filtering of Fully Polarimetric SAR Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2): 212-216.
    [8]YANG Jie, ZHAO Lingli, LI Pingxiang, LANG Fengkai. Preserving Polarimetric Scattering Characteristics Classification by Introducing Normalized Circular-pol Correlation Coefficient[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 911-914.
    [9]DENG Shaoping, LI Pingxiang, ZHANG Jixian, HUANG Guoman. Filtering of Polarimetric SAR Imagery Based on Multiplicative Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1168-1171.
    [10]YANG Jie, LANG Fengkai, LI Deren. An Unsupervised Wishart Classification for Fully Polarimetric SAR Image Based on Cloude-Pottier Decomposition and Polarimetric Whitening Filter[J]. Geomatics and Information Science of Wuhan University, 2011, 36(1): 104-107.

Catalog

    Article views (1144) PDF downloads (109) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return