LUO Tao, HE Xiaoye, WANG Zhaoyi, WANG Wei, LI Xiao, HUANG Qingqing, HE Zhenqiang, KE Zhiyong, MA Na, WANG Tong, LIANG Jing, LI Bo, MEN Lingling, WANG Xiaolong, DONG Lan. Error Analysis and Application of Laser Tracker's Bundle Adjustment in the Tunnel Alignment Measurement of Particle Accelerator[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 919-925. DOI: 10.13203/j.whugis20200718
Citation: LUO Tao, HE Xiaoye, WANG Zhaoyi, WANG Wei, LI Xiao, HUANG Qingqing, HE Zhenqiang, KE Zhiyong, MA Na, WANG Tong, LIANG Jing, LI Bo, MEN Lingling, WANG Xiaolong, DONG Lan. Error Analysis and Application of Laser Tracker's Bundle Adjustment in the Tunnel Alignment Measurement of Particle Accelerator[J]. Geomatics and Information Science of Wuhan University, 2023, 48(6): 919-925. DOI: 10.13203/j.whugis20200718

Error Analysis and Application of Laser Tracker's Bundle Adjustment in the Tunnel Alignment Measurement of Particle Accelerator

More Information
  • Received Date: December 04, 2021
  • Available Online: June 11, 2023
  • Published Date: June 04, 2023
  •   Objectives  The control network in accelerator alignment often forms a straight line or ring. The errors will accumulate as the number of stations increases when performing lap measurements with the laser tracker. To improve the measurement accuracy of the laser tracker control network, we analyze the source of errors and compare four different measurement methods.
      Methods  First, the formulas of error propagation in the bundle adjustment method are derived and the error source of the unknown points is analyzed. Second, the following four schemes are obtained by adopting the bundle adjustment method of laser trackers. Finally, the performances of the above schemes are analyzed in the experiment of bundle adjustment.
      Results  The results show that the absolute position accuracy for the scheme with fixed position and orientation is the highest among the four schemes. The average root mean square (RMS) of the position is 0.147 mm in the experiment of the closed measurement, which is less than that of the unclosed measurement with the RMS of 0.163 mm. In the measurement range of 15 m × 10 m × 3 m, the orientation of the non-fixed scheme flat-rate solution and the average RMS of the plane position are 3.58 s and 0.144 mm, respectively. The station closure can enhance the constraint. Besides, the fixed station center position can effectively inhibit the error accumulation of multi-station lap measurement, improving the accuracy of the network adjustment. Moreover, the result of fixed station center position is better than that of the fixed station center orientation, which indicates that the station positions are vital parameters that affect the two-dimensional bundle adjustment of the laser tracker.
      Conclusion  This paper can provide a reference for the design of the high-precision laser tracker bundle adjustment method.
  • [1]
    汪昭义, 何晓业, 王巍, 等. 激光跟踪仪的高精度预准直方法和精度分析[J]. 武汉大学学报(信息科学版), 2021, 46(4): 555-560. doi: 10.13203/j.whugis20190143

    Wang Zhaoyi, He Xiaoye, Wang Wei, et al. High Precision Pre-alignment Method Based on Laser Tracker[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 555-560. doi: 10.13203/j.whugis20190143
    [2]
    范百兴, 李广云, 周维虎, 等. 激光跟踪仪空间联合平差模型及精度分析[J]. 武汉大学学报(信息科学版), 2018, 43(1): 120-126. doi: 10.13203/j.whugis20130536

    Fan Baixing, Li Guangyun, Zhou Weihu, et al. Precision Analysis of the Unified Spatial Metrology Network Adjustment Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 120-126. doi: 10.13203/j.whugis20130536
    [3]
    刘力, 陈新东, 熊玲, 等. 大口径非球面镜检测中激光跟踪仪测角误差研究[J]. 中国激光, 2016, 43(11): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201611021.htm

    Liu Li, Chen Xindong, Xiong Ling, et al. Angle Error Investigation in Laser Tracker Testing Large Aspheric Mirrors[J]. Chinese Journal of Lasers, 2016, 43(11): 160-170. https://www.cnki.com.cn/Article/CJFDTOTAL-JJZZ201611021.htm
    [4]
    范百兴, 李广云, 李佩臻, 等. 利用激光干涉测距三维网的加权秩亏自由网平差[J]. 武汉大学学报(信息科学版), 2015, 40(2): 222-226. http://ch.whu.edu.cn/article/id/3188

    Fan Baixing, Li Guangyun, Li Peizhen, et al. Adjustment of a Laser Interferometer 3D Rank-defect Free-network[J]. Geomatics and Information Science of Wuhan University, 2015, 40(2): 222-226. http://ch.whu.edu.cn/article/id/3188
    [5]
    任瑜, 刘芳芳, 张丰, 等. 激光跟踪仪多边测量的不确定度评定[J]. 光学 精密工程, 2018, 26(10): 2415-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201810009.htm

    Ren Yu, Liu Fangfang, Zhang Feng, et al. Evaluation of Uncertainty in Multilateration with Laser Tracker[J]. Optics and Precision Engineering, 2018, 26(10): 2415-2422. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201810009.htm
    [6]
    Takatsuji T, Koseki Y, Goto M, et al. Restriction on the Arrangement of Laser Trackers in Laser Trilateration[J]. Measurement Science and Technology, 1998, 9(8): 1357-1359. doi: 10.1088/0957-0233/9/8/033
    [7]
    林嘉睿, 孟伟, 杨凌辉, 等. 激光跟踪仪的双面互瞄定向[J]. 光学 精密工程, 2017, 25(10): 2752-2758. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201710026.htm

    Lin Jiarui, Meng Wei, Yang Linghui, et al. Two-face Reciprocal Orientation for Laser Tracker[J]. Optics and Precision Engineering, 2017, 25(10): 2752-2758. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201710026.htm
    [8]
    李宗春, 郭迎钢, 汤进九, 等. 用三联全站仪法建立高精度三维导线[J]. 武汉大学学报(信息科学版), 2021, 46(4): 546-554. doi: 10.13203/j.whugis20190209

    Li Zongchun, Guo Yinggang, Tang Jinjiu, et al. High Precision 3D Traverse Established by Trigeminy Total Station Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 546-554. doi: 10.13203/j.whugis20190209
    [9]
    范百兴. 激光跟踪仪高精度坐标测量技术研究与实现[D]. 郑州: 信息工程大学, 2013.

    Fan Baixing. Research and Realization of the High Precision Coordinate Measurement Technique Using Laser Tracker[D]. Zhengzhou: Information Engineering University, 2013.
    [10]
    梁静, 王铜, 董岚. 基于长度标准装置提高激光跟踪仪测量精度的方法[J]. 大地测量与地球动力学, 2019, 39(3): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201903022.htm

    Liang Jing, Wang Tong, Dong Lan. Method to Improve the Measurement Accuracy of Laser Tracker Based on the Length Standard Device[J]. Journal of Geodesy and Geodynamics, 2019, 39(3): 325-330. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201903022.htm
    [11]
    张皓琳, 林嘉睿, 邾继贵. 三维坐标转换精度及其影响因素的研究[J]. 光电工程, 2012, 39(10): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201210007.htm

    Zhang Haolin, Lin Jiarui, Zhu Jigui. Three-dimensional Coordinate Transformation Accuracy and Its Influencing Factors[J]. Opto-Electronic Engineering, 2012, 39(10): 26-31. https://www.cnki.com.cn/Article/CJFDTOTAL-GDGC201210007.htm
    [12]
    李辉, 刘巍, 张洋, 等. 激光跟踪仪多基站转站精度模型与误差补偿[J]. 光学 精密工程, 2019, 27(4): 771-783. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201904005.htm

    Li Hui, Liu Wei, Zhang Yang, et al. Model Establishment and Error Compensation of Laser Tracker Station-transfer[J]. Optics and Precision Engineering, 2019, 27(4): 771-783. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201904005.htm
    [13]
    潘廷耀, 范百兴, 易旺民, 等. 激光跟踪仪动态精度评定方法研究[J]. 测绘通报, 2016(5): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201605013.htm

    Pan Tingyao, Fan Baixing, Yi Wangmin, et al. Research on Evaluation Method of Laser Tracker Dynamic Accuracy[J]. Bulletin of Surveying and Mapping, 2016(5): 54-56. https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201605013.htm
    [14]
    孙海丽, 姚连璧, 周跃寅, 等. 激光跟踪仪测量精度分析[J]. 大地测量与地球动力学, 2015, 35(1): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201501047.htm

    Sun Haili, Yao Lianbi, Zhou Yueyin, et al. Analysis of Measurement Accuracy of Laser Tracker[J]. Journal of Geodesy and Geodynamics, 2015, 35(1): 177-181. https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201501047.htm
    [15]
    Muralikrishnan B, Phillips S, Sawyer D. Laser Trackers for Large-scale Dimensional Metrology: A Review[J]. Precision Engineering, 2016, 44: 13-28.
    [16]
    杨龙强, 王斌, 邢晓飞, 等. 全站仪自由设站三维量测中的计算误差分析[J]. 现代隧道技术, 2018, 55(S2): 295-300. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2038.htm

    Yang Longqiang, Wang Bin, Xing Xiaofei, et al. Calculation Error Analysis in Three-dimensional Measurement Based on Free-stationing of a Total Station[J]. Modern Tunnelling Technology, 2018, 55(S2): 295-300. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD2018S2038.htm
    [17]
    罗涛. 激光跟踪仪光束法平差模型和软件实现研究[D]. 武汉: 武汉大学, 2009.

    Luo Tao. Research on Adjustment Model and Software Realization of Laser Tracker by Beam Method[D]. Wuhan: Wuhan University, 2009.
    [18]
    周维虎, 丁蕾, 王亚伟, 等. 光束平差在激光跟踪仪系统精度评定中的应用[J]. 光学 精密工程, 2012, 20(4): 851-857. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201204025.htm

    Zhou Weihu, Ding Lei, Wang Yawei, et al. Application of Bundle Adjustment to Accuracy Evaluation of Laser Tracker[J]. Optics and Precision Engineering, 2012, 20(4): 851-857. https://www.cnki.com.cn/Article/CJFDTOTAL-GXJM201204025.htm
    [19]
    于成浩, 柯明, 赵振堂. 激光跟踪仪测量精度的评定[J]. 测绘工程, 2006, 15(6): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202102010.htm

    Yu Chenghao, Ke Ming, Zhao Zhentang. The Accuracy Assessment for the Measurement of Laser Tracker[J]. Engineering of Surveying and Mapping, 2006, 15(6): 39-42. https://www.cnki.com.cn/Article/CJFDTOTAL-CHGC202102010.htm
  • Related Articles

    [1]WEI Erhu, LIU Xuexi, WANG Lingxuan, LIU Jingnan. Analysis and Assessment of BDS/GPS Combined Precise Point Positioning Accuracy[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1654-1660. DOI: 10.13203/j.whugis20160568
    [2]SHU Bao, LIU Hui, ZHANG Jinsheng, PAN Guofu, JIANG Jun. Performance Assessment of Partial Ambiguity Resolution Based on BDS/GPS Combined Positioning[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 989-994, 1001. DOI: 10.13203/j.whugis20150017
    [3]ZHANG Rui, YANG Yuanxi, ZHANG Qin, HUANG Guanwen, WANG Le, YAN Xingyuan, QU Wei. Contribution Analysis of BDS/GPS Combined Orbit Determination[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 600-608. DOI: 10.13203/j.whugis20150081
    [4]SUI Xin, SHI Chuang, LI Min, XU Zongqiu, XU Aigong. Impact Analysis of GPS/BDS Combined Positioning on Ambiguity Search Region for Short Baseline[J]. Geomatics and Information Science of Wuhan University, 2016, 41(10): 1372-1378. DOI: 10.13203/j.whugis20150479
    [5]GAO Xiao, DAI Wujiao, LI Shijia. Interior Performance Test of High Precision GPS/BDS Compatible Receivers[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 795-799. DOI: 10.13203/j.whugis20130459
    [6]Dongmei, XU Houze. Determination of Geoid Using GPS Leveling and Gravity Data[J]. Geomatics and Information Science of Wuhan University, 2011, 36(5): 621-624.
    [7]LI Yihe, SHEN Yunzhong. Impact of Temporal Correlation of GPS Observations on Baseline Solution[J]. Geomatics and Information Science of Wuhan University, 2011, 36(4): 427-430.
    [8]XIONG Yongliang, HUANG Dingfa, XU Shaoguang, LIAO Hua. Long Distance Kinematic GPS Data Processing and Kinematic Crustal Deformation Features Analysis of Wenchuan Earthquake[J]. Geomatics and Information Science of Wuhan University, 2010, 35(3): 265-269.
    [9]ZENG Xuping. GPS Data Processing of Landslide Vertical Deformation Monitoring[J]. Geomatics and Information Science of Wuhan University, 2004, 29(3): 201-204.
    [10]JIANG Weiping, LIU Jingnan, YE Shirong. The Systematical Error Analysis of Baseline Processing in GPS Network[J]. Geomatics and Information Science of Wuhan University, 2001, 26(3): 196-199,238.
  • Cited by

    Periodical cited type(8)

    1. 翟高鹏,李文彬,薛新春,何杰. 空间直角坐标分量中误差转换到相邻点基线分量中误差的算法设计与实现. 测绘与空间地理信息. 2024(02): 204-206+210 .
    2. 张亮亮,李亚泽,熊磊,杨鹏飞,闵恒良. “北斗云”——电力时空大数据云平台技术与应用研究. 西部资源. 2023(02): 189-192 .
    3. 伏明星,李仲勤,张瑞鹏. 宝兰高铁某标段CPI复测数据处理与稳定性分析. 测绘地理信息. 2021(06): 40-45 .
    4. 刘洋洋,党亚民,许长辉. 基于GAMIT对国家GNSS基准站进行的北斗基线解算分析. 测绘工程. 2019(03): 25-29 .
    5. 张波. 北斗卫星导航系统用于高精度工程控制网建立的可行性分析. 北京测绘. 2019(07): 792-796 .
    6. 白正伟,张勤,黄观文,景策,王家兴. “轻终端+行业云”的实时北斗滑坡监测技术. 测绘学报. 2019(11): 1424-1429 .
    7. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(07): 49-50 .
    8. 闫子耀. 基于北斗系统的船舶导航系统定位精度研究. 中国水运(下半月). 2018(14): 49-50 .

    Other cited types(1)

Catalog

    Article views (365) PDF downloads (69) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return