Citation: | YU Xin, ZHENG Zhaobao, LI Linyi. Oblique Factor Model for Selecting Training Samples[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1870-1877. DOI: 10.13203/j.whugis20200631 |
[1] |
Adeli E, Li X, Kwon D, et al. Logistic Regression Confined by Cardinality-Constrained Sample and Feature Selection [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020, 42(7): 1713-1728 doi: 10.1109/TPAMI.2019.2901688
|
[2] |
Arnold R B, Wang L, Lopez T, et al. Updating Lead and Copper Rule Sample- Site Selection: Best Practices from an Innovative Pilot Program [J]. Journal of American Water Works Association, 2020, 112(4): 22-31 doi: 10.1002/awwa.1478
|
[3] |
Au J, Youngentob K N, Foley W J, et al. Sample Selection, Calibration and Validation of Models Developed from a Large Dataset of Near Infrared Spectra of Tree Leaves[J]. Journal of Near Infrared Spectroscopy, 2020, 28(4): 096703352090253
|
[4] |
Bellver M, Salvador A, Torres J, et al. Mask-Guided Sample Selection for Semi-supervised Instance Segmentation[J]. Multimedia Tools and Applications, 2020, 79(4): 1-19
|
[5] |
Silva M V B, Carvalho A A P, Jacobs A S, et al. Sample Selection Search to Predict Elephant Flows in IXP Programmable Networks[C]//International Conference on Advanced Information Networking and Applications, Caserta, Italy, 2020
|
[6] |
Fernández M, García J E, Gholizadeh R, et al. Sample Selection Procedure in Daily Trading Volume Processes[J]. Mathematical Methods in the Applied Sciences, 2020, 43(13): 7537-7549 doi: 10.1002/mma.5705
|
[7] |
He Kaixun, Wang Kai, Yan Yayun. Active Training Sample Selection and Updating Strategy for Near-Infrared Model with an Industrial Application [J]. Chinese Journal of Chemical Engineering, 2019, 27(11): 2749-2758 doi: 10.1016/j.cjche.2019.02.018
|
[8] |
Kral J, Gotthans T, Marsalek R, et al. On Feedback Sample Selection Methods Allowing Lightweight Digital Predistorter Adaptation[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2020, 67(6): 1976-1988 doi: 10.1109/TCSI.2020.2975532
|
[9] |
Li Huiyong, Bao Weiwei, Hu Jinfeng, et al. A Training Samples Selection Method Based on System Identification for STAP [J]. Signal Processing, 2018, 142: 119-124
|
[10] |
Liu Jing, Zhu Axing, Rossiter D, et al. A Trustworthiness Indicator to Select Sample Points for the Individual Predictive Soil Mapping Method (iPSM) [J]. Geoderma, 2020, 373
|
[11] |
Liu X, Zhu A X, Yang L, et al. A Graded Proportion Method of Training Sample Selection for Updating Conventional Soil Maps[J]. Geoderma, 2020, 357: 113939 doi: 10.1016/j.geoderma.2019.113939
|
[12] |
Lu Qikai, Ma Yong, Xia Guisong. Active Learning for Training Sample Selection in Remote Sensing Image Classification Using Spatial Information [J]. Remote Sensing Letters, 2017, 8(12): 1210-1219 doi: 10.1080/2150704X.2017.1375610
|
[13] |
Lu Wenbo, Ma Chaoqun, Li Peikun. Research on Sample Selection of Urban Rail Transit Passenger Flow Forecasting Based on SCBP Algorithm [J]. IEEE Access, 2020, 8: 89425-89438 doi: 10.1109/ACCESS.2020.2993595
|
[14] |
Lu Yang, Ma Xiaolei, Lu Yinan. A Cluster-Based Sample Selection Strategy for Biological Event Extraction [C] // The 9th International Workshop on Computer Science and Engineering, Hong Kong, China, 2019
|
[15] |
Ma Jing, Hong Dezhi, Wang Hongning. Selective Sampling for Sensor Type Classification in Buildings [C]//The 19th ACM/IEEE International Conference on Information Processing in Sensor Networks, Sydney, Australia, 2020
|
[16] |
Ng W W Y, Jiang X, Tian X, et al. Incremental Hashing with Sample Selection Using Dominant Sets[J]. International Journal of Machine Learning and Cybernetics, 2020, 11(12): 2689-2702 doi: 10.1007/s13042-020-01145-z
|
[17] |
Hamid R. Considering Factors Affecting the Prediction of Time Series by Improving Sine-Cosine Algorithm for Selecting the Best Samples in Neural Network Multiple Training Model [J]. Lecture Notes in Electrical Engineering, 2019, 480: 307-320
|
[18] |
虞欣, 郑肇葆. 基于Q型因子分析的训练样本的选择[J]. 测绘学报, 2007, 36(1): 67-71
Yu Xin, Zheng Zhaobao. Selcection of Training Samples Based on R-Q Factor Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2007, 36(1): 67-71
|
[19] |
虞欣, 郑肇葆. 基于对应分析的训练样本的选择[J]. 测绘学报, 2008, 37(2): 190-195
Yu Xin, Zheng Zhaobao. Selcection of Training Samples Based on Correspondence Analysis[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(2): 190-195
|
[20] |
Tang Pengfei, Du Peijun, Lin Cong, et al. A Novel Sample Selection Method for Impervious Surface Area Mapping Using JL1-3B Nighttime Light and Sentinel-2 Imagery [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 3931-3941
|
[21] |
Tran N, Abramenko O, Jung A. On the Sample Complexity of Graphical Model Selection from Non-stationary Samples[J]. IEEE Transactions on Signal Processing, 2019, 68: 17-32
|
[22] |
Varshavskiy I E, Dmitriev I A, Krasnova A I, et al. Selection of Sampling Rate for Digital Noise Filtering Algorithms[C]//IEEE Conference of Russian Young Researchers in Electrical and Electronic Engineering, St. Petersburg and Moscow, Russia, 2020
|
[23] |
Xu Xinzheng, Li Shan, Liang Tianming, et al. Sample Selection-Based Hierarchical Extreme Learning Machine [J]. Neurocomputing, 2020, 377: 95-102
|
[24] |
於崇文. 数学地质的方法与应用[M]. 北京: 冶金工业出版社, 1980
Yu Chongwen. Mathematical Geology and Application[M]. Beijing: Metallurgy Industry Press, 1980
|
[25] |
Zhang Chenxiao, Wu Yifeng, Guo Mingming, et al. Training Sample Selection for Space-Time Adaptive Processing Based on Multi-frames[J]. Journal of Engineering, 2019, 20: 6369-6372
|
[26] |
Zhang X, Seyfi T, Ju S, et al. Deep Learning for Interference Identification: Band, Training SNR, and Sample Selection[C]//The 20th International Workshop on Signal Processing Advances in Wireless Communications, Cannes, France, 2019
|
[27] |
虞欣, 郑肇葆, 汤凌, 等. 基于Naive Bayes Classifiers的航空影像纹理分类[J]. 武汉大学学报∙信息科学版, 2006, 31(2): 108-111 http://ch.whu.edu.cn/article/id/2379
Yu Xin, Zheng Zhaobao, Tang Ling, et al. Aerial Image Texture Classification Based on Naive Bayes Classifiers[J]. Geomatics and Information Science of Wuhan University, 2006, 31(2): 108-111 http://ch.whu.edu.cn/article/id/2379
|
[28] |
虞欣, 郑肇葆, 叶志伟, 等. 基于Tree Augmented Naive Bayes Classifier的影像纹理分类[J]. 武汉大学学报∙信息科学版, 2007, 32(4): 287-289 http://ch.whu.edu.cn/article/id/1872
Yu Xin, Zheng Zhaobao, Ye Zhiwei, et al. Texture Classification Based on Tree Augmented Naive Bayes Classifier[J]. Geomatics and Information Science of Wuhan University, 2007, 32(4): 287-289 http://ch.whu.edu.cn/article/id/1872
|
[29] |
郑肇葆, 潘励, 郑宏. 图像纹理基元分类的马尔柯夫随机场方法[J]. 武汉大学学报∙信息科学版, 2017, 42(4): 463-467 doi: 10.13203/j.whugis20150615
Zheng Zhaobao, Pan Li, Zheng Hong. A Method of Image Texture Texton Classification with Markov Random Field[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 463-467 doi: 10.13203/j.whugis20150615
|
[30] |
郑肇葆, 郑宏. 利用数据引力进行图像分类[J]. 武汉大学学报∙信息科学版, 2017, 42(11): 1604-1607 doi: 10.13203/j.whugis20160457
Zheng Zhaobao, Zheng Hong. Image Classification Based on Data Gravitation[J]. Geomatics and Information Science of Wuhan University, 2017, 42(11): 1604-1607 doi: 10.13203/j.whugis20160457
|
[1] | ZHANG Aizhu, LI Renren, LIANG Shuneng, SUN Genyun, FU Hang. Hyperspectral Image Classification Based on Sample Augment and Spectral Space Iteration[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 97-109. DOI: 10.13203/j.whugis20220708 |
[2] | WU Hongyang, ZHOU Chao, LIANG Xin, WANG Yue, YUAN Pengcheng, WU Lixing. Evaluation of Landslide Susceptibility Based on Sample Optimization Strategy[J]. Geomatics and Information Science of Wuhan University, 2024, 49(8): 1492-1502. DOI: 10.13203/j.whugis20220527 |
[3] | GUO Haoran, ZHANG Xin, ZHENG Yizhen. Research on Unsupervised Vegetation Remote Sensing Mapping Method Based on Sample Migration[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230242 |
[4] | SUN Yifan, YU Xuchu, TAN Xiong, LIU Bing, GAO Kuiliang. Lightweight Relational Network for Small Sample Hyperspectral Image Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1336-1348. DOI: 10.13203/j.whugis20210157 |
[5] | YANG Gang, SUN Weiwei, ZHANG Dianfa. Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174 |
[6] | GAO Yunlong, ZHANG Fan, QU Xiaozhi, HUANG Xianfeng, CUI Tingting. A Method for Window Extraction with Automatic Sample Selection and Regularity Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 436-443. DOI: 10.13203/j.whugis20150225 |
[7] | WEN Qi, XIA Liegang, LI Lingling, WU Wei. Automatically Samples Selection in Disaster Emergency Oriented Land-Cover Classification[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 799-804. |
[8] | BO Shukui, HAN Xinchao, DING Lin. Automatic Selection of Segmentation Parameters for Object Oriented Image Classification[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 514-517. |
[9] | WANG Yi, ZHANG Liangpei, LI Pingxiang. Purified Algorithm for Training Samples Based on Automatic Searching and Spectral Matching Technique[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3): 216-219. |
[10] | XU Fang, MEI Wensheng, YAN Qin. Pre-selection Sample Method of Genetic Algorithm Fuzzy C-Mean in Support Vector Machines[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 921-924. |
1. |
闫亚亮,陈龙,赵珺,王伟. 基于相关向量机样本选择的钢铁企业副产煤气系统预测. 冶金自动化. 2023(03): 35-43 .
![]() | |
2. |
王昱麒,李斌,朱明旺,刘燕德. 应用最小角回归索套算法优选苹果糖度预测模型的建模样本和波长. 光谱学与光谱分析. 2023(05): 1419-1425 .
![]() |