GAO Yunlong, ZHANG Fan, QU Xiaozhi, HUANG Xianfeng, CUI Tingting. A Method for Window Extraction with Automatic Sample Selection and Regularity Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 436-443. DOI: 10.13203/j.whugis20150225
Citation: GAO Yunlong, ZHANG Fan, QU Xiaozhi, HUANG Xianfeng, CUI Tingting. A Method for Window Extraction with Automatic Sample Selection and Regularity Constraint[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 436-443. DOI: 10.13203/j.whugis20150225

A Method for Window Extraction with Automatic Sample Selection and Regularity Constraint

Funds: 

The National Program on Key Basic Research of China(973 Program) 2012CB719900

the Key Technology Support Program of Hubei Province 220100037

the National Natural Science Foundation of China 41571437

More Information
  • Author Bio:

    GAO Yunlong, PhD candidate, specializes in photogrammetry and remote sensing image processing. E-mail: ylgao@whu.edu.cn

  • Corresponding author:

    ZHANG Fan, PhD, associate professor. E-mail: zhangfan@whu.edu.cn

  • Received Date: February 18, 2016
  • Published Date: March 04, 2018
  • Windows are important elements of building facade. Therefore, window extraction is of significant value to building structural analysis and facade reconstruction. With respect to the inner structural feature and the distribution regularity among windows, this paper proposed a window extract method based on automatic sample selection and distribution regularity constraint. Firstly, sample selection was performed by a template matching method to select a number of window samples, both the positive and the negative, from one selected window sample. Secondly, JointBoost classifier, trained by the window samples, was employed to achieve preliminary window extraction. Then, windows distribution regularity model, which includes horizontal direction, vertical direction, point of interest and similarity, was defined and reconstructed using the preliminary window extraction. Finally, the final window extraction result was achieved by optimizing preliminary window extraction result on the constraint of distribution regularity model. The experiments proved that the proposed method has high extraction ratio and accurate ratio on images with complicated background, complex window structure and perspective distortion.
  • [1]
    刘全海, 邓非, 李楼, 等.面向规划的建筑物屋顶精细纹理快速生成方法[J].武汉大学学报·信息科学版, 2015, 40(8):1054-1060 http://ch.whu.edu.cn/CN/abstract/abstract3412.shtml

    Liu Quanhai, Deng Fei, Li Lou, et al. A Method on a Rapid Generation of Exquisite Textures of Building's Roof Towards Planning[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8):1054-1060 http://ch.whu.edu.cn/CN/abstract/abstract3412.shtml
    [2]
    杨必胜, 董震, 魏征, 等.从车载激光扫描数据中提取复杂建筑物立面的方法[J].测绘学报, 2013, 42(3):411-417 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201509007.htm

    Yang Bisheng, Dong Zhen, Wei Zheng, et al. Extracting Complex Building Facades from Mobile Laser Scanning Data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(3):411-417 http://www.cnki.com.cn/Article/CJFDTotal-CHXB201509007.htm
    [3]
    李畅.城市街道立面自动重建关键技术研究[J].测绘学报, 2011, 40(2):268 https://www.cnki.com.cn/qikan-DKCH201301012.html

    Li Chang. Researching on Key Technique for 3D Auto-Reconstruction of City Street Elevation[J]. Acta Geodaetica et Cartographica Sinica, 2011, 40(2):268 https://www.cnki.com.cn/qikan-DKCH201301012.html
    [4]
    龚健雅, 崔婷婷, 单杰, 等.利用车载移动测量数据的建筑物立面建模方法[J].武汉大学学报·信息科学版, 2015, 40(9):1137-1143 http://ch.whu.edu.cn/CN/abstract/abstract3311.shtml

    Gong Jianya, Cui Tingting, Shan Jie, et al. A Survey on Facade Modeling Using LiDAR Point Clouds and Image Sequences Collected by Mobile Mapping Systems[J]. Geomatics and Information Science of Wuhan University, 2015, 40(9):1137-1143 http://ch.whu.edu.cn/CN/abstract/abstract3311.shtml
    [5]
    Lee S C, Nevatia R. Extraction and Integration of Window in a 3D Building Model from Ground View Images[C]. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Washington D C, US, 2004 http://ieeexplore.ieee.org/document/1315152/?reload=true
    [6]
    Kostelijk T. Semantic Annotation of Urban Scenes: Skyline and Window Detection[D]. Amsterdam: Universiteit van Amsterdam, 2012
    [7]
    Recky M, Leberl F. Windows Detection Using K-means in CIE-Lab Color Space[C]. International Conference on Pattern Recognition, Istanbul, Turkey, 2010 http://ieeexplore.ieee.org/document/5597805/
    [8]
    Mayer H, Reznik S. Building Facade Interpretation from Uncalibrated Wide-Baseline Image Sequences[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2007, 61(6):371-380 doi: 10.1016/j.isprsjprs.2006.10.007
    [9]
    Sirmacek B, Hoegner L, Stilla U. Detection of Windows and Doors from Thermal Images by Grouping Geometrical Features[C]. Joint Urban Remote Sensing Event, Munich, Germany, 2011 http://ieeexplore.ieee.org/document/5764737/
    [10]
    Ali H, Seifert C, Jindal N, et al. Window Detection in Facades[C]. International Conference on Image Analysis and Processing, Seville, Spain, 2007 http://ieeexplore.ieee.org/document/4362880/
    [11]
    王曦. 基于语义的建筑物立面窗户检测算法研究及实现[D]. 北京; 北京大学, 2010

    Wang X. Research and Implementation of Semantic Based Window Extraction for Building Facade[D]. Beijing: Beijing University, 2010
    [12]
    Pauly M, Mitra N J, Wallner J, et al. Discovering Structural Regularity in 3D Geometry[J]. ACM Trans Graph, 2008, 27(3):1-11 http://graphics.stanford.edu/~niloy/research/structure/structure_sig_08.html
    [13]
    Li W, Zheng X, Chen J. Discovering Structural Regularity in Facade Image[C]. IEEE International Conference on Systems Man and Cybernetics, Istanbul, Turkey, 2010 https://www.infona.pl/resource/bwmeta1.element.ieee-art-000005641686
    [14]
    Iwaszczuk D, Hoegner L, Stilla U. Detection of Windows in IR Building Textures Using Masked Correlation[C]. Photogrammetric Image Analysis-isprs Conference, Berlin, 2011 doi: 10.1007/978-3-642-24393-6_12
    [15]
    于玲, 吴铁军.集成学习:Boosting算法综述[J].模式识别与人工智能, 2004, 17(1):52-59 https://www.wenkuxiazai.com/doc/4a33cbc35fbfc77da269b1e4.html

    Yu Ling, Wu Tiejun. Assemble Learning:A Survery of Boosting Algorithms[J]. Pattern Recognition and Artificial Intelligence, 2004, 17(1):52-59 https://www.wenkuxiazai.com/doc/4a33cbc35fbfc77da269b1e4.html
    [16]
    陶建斌, 舒宁, 沈照庆.利用互信息改进遥感影像朴素贝叶斯网络分类器[J].武汉大学学报·信息科学版, 2010, 35(2):228-232 http://ch.whu.edu.cn/CN/abstract/abstract852.shtml

    Tao Jianbin, Shu Ning, Shen Zhaoqing. An Improvement of Naive Bayesian Network Classifier for Remote Sensing Images Based on Mutual Information[J]. Geomatics and Information Science of Wuhan University, 2010, 35(2):228-232 http://ch.whu.edu.cn/CN/abstract/abstract852.shtml
    [17]
    Dalal N, Triggs B. Histograms of Oriented Gradients for Human Detection[C]. IEEE Conference on Computer Vision and Pattern Recognition, San Diego, USA, 2005
    [18]
    Rahtu E, Salo M, Heikkil J. Affine Invariant Pattern Recognition Using Multiscale Autoconvolution[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(6):908-918 doi: 10.1109/TPAMI.2005.111
    [19]
    Rahtu E, Salo M, Heikkila J, et al. Generalized Afcne Moment Invariants for Object Recognition[C]. International Conference on Pattern Recognition, Hong Kong, China, 2006 https://dl.acm.org/citation.cfm?id=1172227
  • Related Articles

    [1]HU Deyong, QIAO Kun, WANG Xingling, ZHAO Limin, JI Guohua. Comparison of Three Single-window Algorithms for Retrieving Land-Surface Temperature with Landsat 8 TIRS Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(7): 869-876. DOI: 10.13203/j.whugis20150164
    [2]FENG Qi, CHENG Xuejun, SHEN Xin, XIAO Xiao, WANG Lihui, ZHANG Wen. Inland Riverine Turbidity Estimation for Hanjiang River with Landsat 8 OLI Imager[J]. Geomatics and Information Science of Wuhan University, 2017, 42(5): 643-647. DOI: 10.13203/j.whugis20141002
    [3]WANG Yuzhuo, LIU Xiuguo, ZHANG Wei. Raster River Networks Extraction Based on Parallel Multiple Flow Direction Algorithms[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1646-1652,1682. DOI: 10.13203/j.whugis20140645
    [4]LI Yuguang, LI Qingquan. A Fast Algorithm for Huge Volume Floating Car Data Map-Matching:A Vector to Raster Map Conversion Approach[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6): 724-728. DOI: 10.13203/j.whugis20140071
    [5]DONG Jian, PENG Rencan, CHEN Yi, LI Ning. An Algorithm for Centre Line Generation Based on Model of Approaching Intersection of Buffering Borderline from Reciprocal Direction[J]. Geomatics and Information Science of Wuhan University, 2011, 36(9): 1120-1123.
    [6]ZHANG Junfeng, FEI Lifan, HUANG Lina, LIU Yining. Real-Time Dynamic Rendering Algorithm of Terrain Using 3D_DP Method and Quad_TIN Model[J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 346-350.
    [7]LAN Qiuping, FEI Lifan, LIU Yining. An Approach on Calculating Firn Volume Change from Multi-temporal DEMs[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1222-1225.
    [8]HUANG Lina, FEI Lifan. Experimental Investigation on the Three Dimension Generalization of Contour Lines using 3D D-P Algorithm[J]. Geomatics and Information Science of Wuhan University, 2010, 35(1): 55-58.
    [9]YAN Huiwu, ZHU Guorui, XU Zhiyong, GAO Shan. Volume Rendering and 3D Modeling of Hydrogeologic Layer Based on Kriging Algorithm[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 611-614.
    [10]CHENG Penggen, GONG Jianya, SHI Wenzhong, LIU Shaohua. Geological Object Modeling Based on Quasi Tri-prism Volume and Its Application[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 602-307.
  • Cited by

    Periodical cited type(17)

    1. 冉烽均,龚川. 基于OpenStreetMap数据的土地利用制图. 北京测绘. 2024(02): 238-244 .
    2. 樊潇. 以建立草原公园为抓手,推动牧区草原转型升级. 中国草食动物科学. 2022(01): 61-64 .
    3. 李霞,潘冬荣,孙斌,姜佳昌,俞慧云,王红霞,杜笑村,吴丹丹. 甘肃省草地退化概况分析——基于甘肃省第一、二次草原普查数据. 草业科学. 2022(03): 485-494 .
    4. 刘志刚,关文昊,何国兴,蒲小鹏,纪童,杨军银,李强,柳小妮. 黄河源5种高寒植物光谱特征分析及识别. 草原与草坪. 2022(04): 23-30 .
    5. 申紫雁,刘昌义,胡夏嵩,周林虎,许桐,李希来,李国荣. 黄河源区高寒草地不同深度土壤理化性质与抗剪强度关系研究. 干旱区研究. 2021(02): 392-401 .
    6. 王俊奇,王广军,梁四海,杜海波,彭红明. 1996—2015年黄河源区植被覆盖度提取和时空变化分析. 冰川冻土. 2021(02): 662-674 .
    7. 朱宁,王浩,宁晓刚,刘娅菲. 草地退化遥感监测研究进展. 测绘科学. 2021(05): 66-76 .
    8. 沈贝贝,侯路路,丁蕾,范蓓蕾,毛平平,徐大伟,闫瑞瑞,辛晓平,陈金强. 数字牧场研究进展浅析. 中国农业信息. 2021(05): 1-11 .
    9. 刘炜,孙海霞,杨晓波. 基于高光谱图像的协同分层波谱识别——以兰州、榆林地区为例. 红外与毫米波学报. 2020(01): 99-110 .
    10. 韩万强,靳瑰丽,岳永寰,王惠宁,宫珂,吴雪儿,吾鲁帕·阿得尔卡里. 伊犁绢蒿荒漠草地3种主要植物光谱及植被指数改进. 新疆农业科学. 2020(05): 950-957 .
    11. 刘炜,孙海霞,杨晓波,董建民. 对数变换、导数变换的高寒草地反射光谱特征分析与识别——以那曲地区HJ-1A/HSI图像为例. 光谱学与光谱分析. 2020(07): 2200-2207 .
    12. 董元,董梦,单莹. 基于高光谱遥感的树种识别. 华北理工大学学报(自然科学版). 2020(04): 11-16 .
    13. 付晶莹,彭婷,江东,林刚,边鹏,韩昊. 草地资源立体观测研究进展与理论框架. 资源科学. 2020(10): 1932-1943 .
    14. 苏玥. 基于遥感的草地退化研究综述. 内蒙古科技与经济. 2019(06): 53-54+56 .
    15. 查向浩,王玉洁,李有文,王超,莫治新. 草地土壤碳密度研究进展. 北方园艺. 2019(09): 159-163 .
    16. 王云艳,罗冷坤,周志刚. 改进型DeepLab的极化SAR果园分类. 中国图象图形学报. 2019(11): 2035-2044 .
    17. 张良培,刘蓉,杜博. 使用量子优化算法进行高光谱遥感影像处理综述. 武汉大学学报(信息科学版). 2018(12): 1811-1818 .

    Other cited types(9)

Catalog

    Article views (1484) PDF downloads (251) Cited by(26)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return