YANG Gang, SUN Weiwei, ZHANG Dianfa. Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174
Citation: YANG Gang, SUN Weiwei, ZHANG Dianfa. Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 737-744. DOI: 10.13203/j.whugis20170174

Separable Nonnegative Matrix Factorization Based Band Selection for Hyperspectral Imagery

Funds: 

National Natural Science Foundation of China 41671342

National Natural Science Foundation of China 41801256

Natural Science Foundation of Zhejiang Province LR19D010001

Natural Science Foundation of Zhejiang Province LQ18D010001

Open Fund of Key Laboratory of Earth Observation and Geospatial Information Science of NASG 201804

Open Fund of State Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University 18R05

More Information
  • Author Bio:

    YANG Gang, PhD, lecturer, specializes in quality improvement of remote sensing and information extraction, and coastal health monitoring techniques and application of remote sensing. E-mail: yanggang@nbu.edu.cn

  • Corresponding author:

    SUN Weiwei, PhD, associate professor. E-mail: sunweiwei@nbu.edu.cn

  • Received Date: April 16, 2018
  • Published Date: May 04, 2019
  • Strong intra-band correlations along with numerous bands seriously hinder the processing and applications of hyperspectral remote sensing images in realistic applications. A separable non-negative matrix factorization (SepNMF) method is presented to explore the band selection problem on hyperspectral imagery (HSI). The method investigates the separability structure in the band set of the HSI data to improve the regular non-negative matrix factorization model, and it formulates the band selection problem into the problem of finding representative columns that represent other bands with non-negative and linear combinations in the SepNMF model. The method adopts the recursive projection method to iteratively select the representative bands to constitute the proper band subset. Three groups of experiments on two open HSI data sets are designed to carefully testify the performance of the SepNMF in band selection. Several popular methods are utilized to compare against the proposed SepNMF method. Experimental results show that the SepNMF obtains the best overall classification accuracies of all while taking shorter computational times ranking second among all the comparison methods. Therefore, the SepNMF method can be an alternative choice for selecting proper bands in hyperspectral image classification.
  • [1]
    童庆禧, 张兵, 张立福.中国高光谱遥感的前沿进展[J].遥感学报, 2016, 20(5):689-707 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605002

    Tong Qingxi, Zhang Bing, Zhang Lifu.Current Progress of Hyperspectral Remote Sensing in China[J].Journal of Remote Sensing, 2016, 20(5):689-707 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605002
    [2]
    张良培, 李家艺.高光谱图像稀疏信息处理综述与展望[J].遥感学报, 2016, 20(5):1091-1101 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605032

    Zhang Liangpei, Li Jiayi.Development and Prospect of Sparse Representation-based Hyperspectral Image Processing and Analysis[J].Journal of Remote Sensing, 2016, 20(5):1091-1101 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605032
    [3]
    张兵.高光谱图像处理与信息提取前沿[J].遥感学报, 2016, 20(5):1062-1090 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605031

    Zhang Bing.Advancement of Hyperspectral Image Processing and Information Extraction[J].Journal of Remote Sensing, 2016, 20(5):1062-1090 http://d.old.wanfangdata.com.cn/Periodical/ygxb201605031
    [4]
    刘帅, 朱亚杰, 薛磊.一种结合稀疏表示和纹理分块的遥感影像超分辨率方法[J].武汉大学学报∙信息科学版, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml

    Liu Shuai, Zhu Yajie, Xue Lei.Remote Sensing Image Super-Resolution Method Using Sparse Representation and Classified Texture Patches[J].Geomatics and Information Science of Wuhan University, 2015, 40(5):578-582 http://ch.whu.edu.cn/CN/abstract/abstract3248.shtml
    [5]
    黄远程, 钟燕飞, 赵野鹤, 等.联合盲分解与稀疏表达的高光谱图像异常目标检测[J].武汉大学学报∙信息科学版, 2015, 40(9):1144-1150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml

    Huang Yuancheng, Zhong Yanfei, Zhao Yehe, et al.Joint Blind Unmixing and Sparse Representation for Anomaly Detection in Hyperspectral Image[J].Geomatics and Information Science of Wuhan University, 2015, 40(9):1144-1150 http://ch.whu.edu.cn/CN/abstract/abstract3312.shtml
    [6]
    Sun W, Zhang L, Du B, et al.Band Selection Using Improved Sparse Subspace Clustering for Hyperspectral Imagery Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(6):2784-2797 doi: 10.1109/JSTARS.2015.2417156
    [7]
    Pal M, Foody G M.Feature Selection for Classification of Hyperspectral Data by SVM[J].IEEE Transactions on Geoscience and Remote Sensing, 2010, 48(5):2297-2307 doi: 10.1109/TGRS.2009.2039484
    [8]
    Sun W W, Zhang L P, Zhang L F, et al.A Dissimilarity-Weighted Sparse Self-Representation Method for Band Selection in Hyperspectral Imagery Classification[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(9):1-15 doi: 10.1109/JSTARS.2016.2610587
    [9]
    Chang C I, Du Q, Sun T L, et al.A Joint Band Prioritization and Band-Decorrelation Approach to Band Selection for Hyperspectral Image Classification[J].IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(6):2631-2641 doi: 10.1109/36.803411
    [10]
    Chang C I, Wang S.Constrained Band Selection for Hyperspectral Imagery[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6):1575-1585 doi: 10.1109/TGRS.2006.864389
    [11]
    Martínez-Usómartinez-Uso A, Pla F, Sotoca J M, et al.Clustering-Based Hyperspectral Band Selection Using Information Measures[J].IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(12):4158-4171 doi: 10.1109/TGRS.2007.904951
    [12]
    Qian Y, Yao F, Jia S.Band Selection for Hyperspectral Imagery Using Affinity Propagation[J].IET Computer Vision, 2009, 3(4):213-222 doi: 10.1049/iet-cvi.2009.0034
    [13]
    Du Q, Yang H.Similarity-Based Unsupervised Band Selection for Hyperspectral Image Analysis[J].IEEE Geoscience & Remote Sensing Letters, 2008, 5(4):564-568 http://cn.bing.com/academic/profile?id=24b44d39933248806cfd30f829bc9a91&encoded=0&v=paper_preview&mkt=zh-cn
    [14]
    Su H, Du Q, Chen G, et al.Optimized Hyperspectral Band Selection Using Particle Swarm Optimization[J].IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2014, 7(6):2659-2670 doi: 10.1109/JSTARS.2014.2312539
    [15]
    Li J M, Qian Y T.Clustering-Based Hyperspectral Band Selection Using Sparse Nonnegative Matrix Factorization[J].Journal of Zhejiang University SCIENCE C, 2011, 12(7):542-549 doi: 10.1631/jzus.C1000304
    [16]
    Chepushtanova S, Gittins C, Kirby M.Band Selection in Hyperspectral Imagery Using Sparse Support Vector Machines[C].SPIE Conference in Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XX, Baltimore, Maryland, USA, 2014
    [17]
    Yuan Y, Zhu G, Wang Q.Hyperspectral Band Selection by Multitask Sparsity Pursuit[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):631-644 doi: 10.1109/TGRS.2014.2326655
    [18]
    Feng Y, Yuan Y, Lu X.A Non-negative Low-rank Representation for Hyperspectral Band Selection[J].International Journal of Remote Sensing, 2016, 37(19):4590-4609 doi: 10.1080/01431161.2016.1214299
    [19]
    Sun W, Li W, Li J, et al.Band Selection Using Sparse Nonnegative Matrix Factorization with the Thresholded Earth's Mover Distance for Hyperspectral Imagery Classification[J].Earth Science Informatics, 2015, 8(4):907-918 doi: 10.1007/s12145-014-0201-3
    [20]
    Lu X, Wu H, Yuan Y, et al.Manifold Regularized Sparse NMF for Hyperspectral Unmixing[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(5):2815-2826 doi: 10.1109/TGRS.2012.2213825
    [21]
    Donoho D L, Stodden V.When Does Non-negative Matrix Factorization Give a Correct Decomposition into Parts?[C].The 2003 Conference in Advances in Neural Information Processing Systems, Whistler, British Columbia, Canada, 2003
    [22]
    Gillis N.Robustness Analysis of Hottopixx, a Linear Programming Model for Factoring Nonnegative Matrices[J].SIAM Journal on Matrix Analysis and Applications, 2013, 34(3):1189-1212 doi: 10.1137/120900629
    [23]
    Kumar A, Sindhwani V, Kambadur P.Fast Conical Hull Algorithms for Near-Separable Non-negative Matrix Factorization[C].The 30th International Conference on Machine Learning, Atlanta, USA, 2013
    [24]
    Gillis N, Vavasis S A.Fast and Robust Recursive Algorithms for Separable Nonnegative Matrix Factorization[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(4):698-714 doi: 10.1109/TPAMI.2013.226
    [25]
    Li Shuangjiang, Qi Hairong.Sparse Representation Based Band Selection for Hyperspectral Images[C].The 18th IEEE International Conference on Image Processing, Brussels, Belgium, 2011
    [26]
    Jia S, Tang G, Zhu J, et al.A Novel Ranking-Based Clustering Approach for Hyperspectral Band Selection[J].IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(1):88-102 doi: 10.1109/TGRS.2015.2450759
  • Cited by

    Periodical cited type(5)

    1. 李殷娜,李正强,郑杨,侯伟真,徐文斌,马??,樊程,葛邦宇,姚前,史正. 基于非负矩阵分解的中红外地表特性光谱重建方法. 光谱学与光谱分析. 2024(02): 563-570 .
    2. 钟雷洋,周颖,高松,夏吉喆,李珍,李晓明,乐阳,李清泉. 突发公共卫生事件下的人口流动模式变化识别. 武汉大学学报(信息科学版). 2024(07): 1237-1249 .
    3. 李玉,甄畅,石雪,朱磊. 基于波段影像统计信息量加权K-means聚类的高光谱影像分类. 控制与决策. 2021(05): 1119-1126 .
    4. 赵玉英,任明武. 基于SNMF聚类与类间可分性因子的高光谱波段选择. 计算机与数字工程. 2021(09): 1884-1888 .
    5. 曾梦,宁彬,蔡之华,谷琼. 使用深度对抗子空间聚类实现高光谱波段选择. 计算机应用. 2020(02): 381-385 .

    Other cited types(2)

Catalog

    Article views (3880) PDF downloads (122) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return