GAO Song. A Review of Recent Researches and Reflections on Geospatial Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1865-1874. DOI: 10.13203/j.whugis20200597
Citation: GAO Song. A Review of Recent Researches and Reflections on Geospatial Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1865-1874. DOI: 10.13203/j.whugis20200597

A Review of Recent Researches and Reflections on Geospatial Artificial Intelligence

More Information
  • Author Bio:

    GAO Song, PhD, assistant professor. He received his PhD from the University of California-Santa Barbara, and is currently an assistant professor and director of the Geospatial Data Science Lab at the University of Wisconsin-Madison. His research focuses on theories of place-based geographic information science, GeoAI, spatiotemporal big data and social sensing. E-mail:song.gao@wisc.edu

  • Received Date: November 02, 2020
  • Published Date: December 04, 2020
  • The technological progress in the field of artificial intelligence (AI) has brought new opportunities and challenges to the intelligent development and innovative research in geospatial related fields. Geospatial artificial intelligence (GeoAI) refers to the interdisciplinary research direction that combines geography, earth science and artificial intelligence, and seeks to solve major scientific and engineering problems in human-environmental interaction systems through the research and development of spatial intelligence in machines to improve the dynamic perception, intelligent reasoning and knowledge discovery of geographic phenomena and earth science processes. This paper briefly summarizes the historical origins of GeoAI development, introduces spatially explicit and implicit AI models, reviews recent GeoAI research and applications(including spatial representation learning, spatiotemporal prediction and spatial interpolation, monitoring of geographic resources and environment, cartography, and geo-text data semantic analysis), and identifies several potential research challenges and directions for the future development of GeoAI.
  • [1]
    Buchanan B G. A (Very) Brief History of Artificial Intelligence[J].AI Mag, 2005, 26(4): 53-60
    [2]
    Smith T R. Artificial Intelligence and Its Applicability to Geographical Problem Solving[J]. Prof Geogr, 1984, 36(2):147-158 doi: 10.1111/j.0033-0124.1984.00147.x
    [3]
    Couclelis H. Artificial Intelligence in Geography: Conjectures on the Shape of Things to Come[J]. Prof Geogr, 1986, 38(1):1-11 doi: 10.1111/j.0033-0124.1986.00001.x
    [4]
    Openshaw S. Artificial Intelligence in Geography[M]. Chichester, UK: John Wiley & Sons Inc, 1997
    [5]
    Hinton G E, Salakhutdinov R R.Reducing the Dimensionality of Data with Neural Networks[J].Science, 2006, 313(5 786):504-507
    [6]
    Lecun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7 553): 436-444
    [7]
    Janowicz K, Gao S, McKenzie G, et al. GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond[J]. Int J Geogr Inf Sci, 2020, 34(4): 625-636
    [8]
    Reichstein M, Camps-Valls G, Stevens B, et al. Deep Learning and Process Understanding for Data-Driven Earth System Science[J]. Nature, 2019, 566(7 743): 195-204 http://www.nature.com/articles/s41586-019-0912-1
    [9]
    Mao H, Hu Y, Kar B, et al. GeoAI 2017 Workshop Report: The 1st ACM SIGSPATIAL International Workshop on GeoAI[R]. Redondo Beach, CA, USA, 2016
    [10]
    Hu Y, Gao S, Newsam S D, et al. GeoAI 2018 Workshop Report: The 2nd ACM SIGSPATIAL International Workshop on GeoAI[R]. WA, USA, 2018
    [11]
    Gao S.AI for Geographic Knowledge Discovery[R]. GeoAI 2019 Workshop Report: The 3nd ACM SIGSPATIAL International Workshop on GeoAI, WA, USA, 2019
    [12]
    Hu Y, Gao S, Lunga D, et al. GeoAI at ACM SIGSPATIAL: Progress, Challenges, and Future Directions[J]. SIGSPATIAL Spec, 2019, 11(2):5-15 doi: 10.1145/3377000.3377002
    [13]
    Wachowicz M, Gao S. Machine Learning Approaches[M/OL]//Wilson J. Geogr Inf Sci(Technol Body Knowl 2nd Quart. https://gistbok.ucgis.org/bok-topics/machine-learning-approaches, 2020
    [14]
    Goodchild M F.Issues in Spatially Explicit Modeling[C]. LUCC Report and Review of an International Workshop, Irvine, California, USA, 2011
    [15]
    Yan B, Janowicz K, Mai G, et al. A Spatially Explicit Reinforcement Learning Model for Geographic Knowledge Graph Summarization[J]. Trans GIS, 2019, 23(3): 620-640
    [16]
    Yan B, Janowicz K, Mai G, et al. Xnet+sc: Classifying Places Based on Images by Incorporating Spatial Contexts[C]. 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 2018
    [17]
    Zammit-Mangion A, Ng T L G, Vu Q, et al. Deep Compositional Spatial Models[OL]. https://arxiv.org/abs/1906.02840, 2019
    [18]
    Klemmer K, Koshiyama A, Flennerhag S. Augmenting Correlation Structures in Spatial Data Using Deep Generative Models[OL]. https://arxiv.org/abs/1905.09796, 2019
    [19]
    Rao J, Gao S, Kang Y, et al. LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection[C].Leibniz International Proceedings in Informatics, Poznań, Poland, 2020
    [20]
    Courville B A, Vincent P.Representation Learning: A Review and New Perspectives[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1 798-1 828
    [21]
    Yan B, Mai G, Janowicz K, et al. From ITDL to Place2Vec—Reasoning About Place Type Similarity and Relatedness by Learning Embeddings from Augmented Spatial Contexts[J]. GIS Proc ACM Int Symp Adv Geogr Inf Syst, 2017, 11:1-10
    [22]
    Yao Y, Li X, Liu X P, et al. Sensing Spatial Distribution of Urban Land Use by Integrating Points-of-Interest and Google Word2Vec Model[J]. Int J Geogr Inf Sci, 2017, 31(4): 825-848 doi: 10.1080/13658816.2016.1244608
    [23]
    Liu K, Gao S, Qiu P, et al. Road2Vec: Measuring Traffic Interactions in Urban Road System from Massive Travel Routes[J]. ISPRS Int J Geo-Information, 2017, 6(11):321 http://adsabs.harvard.edu/abs/2017IJGI....6..321L
    [24]
    Crivellari A, Beinat E. From Motion Activity to Geo-Embeddings: Generating and Exploring Vector Representations of Locations, Traces and Visitors through Large-Scale Mobility Data[J]. ISPRS Int J Geo-Information, 2019, 8(3):134 http://www.mdpi.com/2220-9964/8/3/134
    [25]
    Jean N, Wang S, Samar A, et al.Tile2Vec: Unsupervised Representation Learning for Spatially Distributed Data[C]. The AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019
    [26]
    Mai G, Janowicz K, Yan B, et al. Multi-Scale Representation Learning for Spatial Feature Distributions Using Grid Cells[C]. International Conference on Learning Representations, Addis Ababa, Ethiopia, 2019
    [27]
    Zhu A, Lu G, Liu J, et al. Spatial Prediction Based on Third Law of Geography[J]. Ann GIS, 2018, 24(4): 225-240
    [28]
    Lam N S N. Spatial Interpolation Methods: A Review[J]. Am Cartogr, 1983, 10(2):129-150
    [29]
    龚健雅.人工智能时代测绘遥感技术的发展机遇与挑战[J].武汉大学学报·信息科学版, 2018, 43(12): 1 788-1 796 doi: 10.13203/j.whugis20180082

    Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J].Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 788-1 796 doi: 10.13203/j.whugis20180082
    [30]
    Liu Y, Liu X, Gao S, et al. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments[J]. Ann Assoc Am Geogr, 2015, 105(3): 512-530 doi: 10.1080/00045608.2015.1018773
    [31]
    刘瑜.社会感知视角下的若干人文地理学基本问题再思考[J].地理学报, 2020, 71(4): 564-575 http://www.cnki.com.cn/Article/CJFDTotal-dlxb201604004.htm

    Liu Yu.Revisiting Several Basic Geographical Concepts: A Social Sensing Perspective[J]. Acta Geographica Sinica, 2020, 71(4): 564-575 http://www.cnki.com.cn/Article/CJFDTotal-dlxb201604004.htm
    [32]
    Veres M, Moussa M. Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends[J]. IEEE Trans Intell Transp Syst, 2020, 21(8):3 152-3 168 http://ieeexplore.ieee.org/document/8771378
    [33]
    Zhu D, Cheng X, Zhang F, et al. Spatial Interpolation Using Conditional Generative Adversarial Neural Networks[J]. Int J Geogr Inf Sci, 2020, 34(4): 735-758
    [34]
    Li M, Lu F, Zhang H, et al. Predicting Future Locations of Moving Objects with Deep Fuzzy-LSTM Networks[J]. Transp A Transp Sci, 2020, 16(1):119-136
    [35]
    Bao Y, Huang Z, Li L, et al. A BiLSTM-CNN Model for Predicting Users' Next Locations Based on Geotagged Social Media[J]. Int J Geogr Inf Sci, 2020, DOI: 10.1080/13658816.2020.1808896
    [36]
    Liang Y, Gao S, Cai Y, et al.Calibrating the Dynamic Huff Model for Business Analysis Using Location Big Data[J]. Trans GIS, 2020, 24(3): 681-703
    [37]
    Xing X, Huang Z, Cheng X M, et al. Mapping Human Activity Volumes Through Remote Sensing Imagery[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13: 5 652-5 668
    [38]
    Pourebrahim N, Sultana S, Thill J-C, et al. Enhancing Trip Distribution Prediction with Twitter Data: Comparison of Neural Network and Gravity Models[C]. The 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Seattle, WA, USA, 2018
    [39]
    Yao X, Gao Y, Zhu D, et al. Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks[J]. IEEE Trans Intell Transp Syst, 2020(99): 1–11
    [40]
    Murphy J, Pao Y, Haque A. Image-Based Classification of GPS Noise Level Using Convolutional Neural Networks for Accurate Distance Estimation[C]. The 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, Redondo Beach, CA, USA, 2017
    [41]
    Zhang F, Wu L, Zhu D, et al. Social Sensing from Street-Level Imagery: A Case Study in Learning Spatio-Temporal Urban Mobility Patterns[J]. ISPRS J Photogramm Remote Sens, 2019, 153: 48-58
    [42]
    Zhang Y, Cheng T. Graph Deep Learning Model for Network-Based Predictive Hotspot Mapping of Sparse Spatio-Temporal Events[J]. Comput Environ Urban Syst, 2020, 79: 101 403
    [43]
    Ren Y, Cheng T, Zhang Y. Deep Spatio-Temporal Residual Neural Networks for Road-Network-Based Data Modeling[J]. Int J Geogr Inf Sci, 2019, 33(9): 1 894-1 912
    [44]
    Zhao L, Song Y J, Zhang Z, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Trans Intell Transp Syst, 2020, 21(9): 3 848-3 858
    [45]
    刘瑜, 詹朝晖, 朱递, 等[J].集成多源地理大数据感知城市空间分异格局[J].武汉大学学报·信息科学版, 2018, 43(3): 327-335 doi: 10.13203/j.whugis20170383

    Liu Yu, Zhan Zhaohui, Zhu Di, et al. Incorporating Multi-source Big Geo-Data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 327-335 doi: 10.13203/j.whugis20170383
    [46]
    Zhang F, Zu J Y, Hu M Y, et al. Uncovering Inconspicuous Places Using Social Media Check-Ins and Street View Images[J]. Comput Environ Urban Syst, 2020, 81: 101 478
    [47]
    Helbich M, Yao Y, Liu Y, et al. Using Deep Learning to Examine Street View Green and Blue Spaces and Their Associations with Geriatric Depression in Beijing, China[J]. Environ Int, 2019, 126: 107-117
    [48]
    Cao R, Tu W, Yang C X, et al. Deep Learning-Based Remote and Social Sensing Data Fusion for Urban Region Function Recognition[J]. ISPRS J Photogramm Remote Sens, 2020, 163: 82-97 http://www.researchgate.net/publication/339866935_Deep_learning-based_remote_and_social_sensing_data_fusion_for_urban_region_function_recognition
    [49]
    Ye C, Zhang F, Mu L, et al.Urban Function Recognition by Integrating Social Media and Street-Level Imagery[J]. Environ Plan B Urban Anal City Sci, 2020, DOI: 10.1177/2399808320935467
    [50]
    Law S, Seresinhe C I, Shen Y, et al.Street-Frontage-Net: Urban Image Classification Using Deep Convolutional Neural Networks[J]. Int J Geogr Inf Sci, 2020, 34(4): 681-707 doi: 10.1080/13658816.2018.1555832
    [51]
    李德仁, 王密, 沈欣, 等.从对地观测卫星到对地观测脑[J].武汉大学学报·信息科学版, 2017, 42(2): 143-149 doi: 10.13203/j.whugis20160526

    Li Deren, Wang Mi, Shen Xin, et al. From Earth Observation Satellite to Earth Observation Brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149 doi: 10.13203/j.whugis20160526
    [52]
    Scott G J, England M R, Starms W A, et al. Training Deep Convolutional Neural Networks for Land-Cover Classification of High-resolution Imagery[J]. IEEE Geosci Remote Sens Lett, 2017, 14(4): 549-553 http://www.onacademic.com/detail/journal_1000039827206610_63c2.html
    [53]
    Huang B, Zhao B, Song Y. Urban Land-Use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery[J]. Remote Sens Environ, 2018, 214:73-86 http://www.sciencedirect.com/science/article/pii/S0034425718302074
    [54]
    Peng B, Meng Z, Huang Q, et al. Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery[J]. Remote Sens, 2019, 11(21): 2 492 http://www.researchgate.net/publication/336809460_Patch_Similarity_Convolutional_Neural_Network_for_Urban_Flood_Extent_Mapping_Using_Bi-Temporal_Satellite_Multispectral_Imagery
    [55]
    Yuan Q Q, Shen H F, Li T W, et al.Deep Learning in Environmental Remote Sensing: Achievements and Challenges[J]. Remote Sens Environ, 2020, 241: 111 716 http://www.sciencedirect.com/science/article/pii/S0034425720300857
    [56]
    Yuan Q, Zhang Q, Li J, et al. Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[J]. IEEE Trans Geosci Remote Sens, 2018, 57(2): 1 205-1 218 http://ieeexplore.ieee.org/document/8454887
    [57]
    Zhang Q, Yuan Q, Zeng C, et al. Missing Data Reconstruction in Remote Sensing Image with a Unified Spatial-Temporal-Spectral Deep Convolutional Neural Network[J]. IEEE Trans Geosci Remote Sens, 2018, 56(8): 4 274–4 288 http://ieeexplore.ieee.org/document/8316243/references
    [58]
    王家耀.人工智能时代: 地图学从哪里来到哪里去[C].第三届全国地图学理论与方法研讨会, 广州, 2018

    Wang Jiaoyao. The Times of AI: Where Cartography Comes From and Goes to[C].The 3rd National Conference on Cartography Theory and Method, Guangzhou, China, 2018
    [59]
    Li W, Hsu C Y. Automated Terrain Feature Identification from Remote Sensing Imagery: A Deep Learning Approach[J]. Int J Geogr Inf Sci, 2020, 34(4): 637-660 doi: 10.1080/13658816.2018.1542697
    [60]
    Xie Y, Cai J, Bhojwani R, et al. A Locally-Constrained Yolo Framework for Detecting Small and Densely-Distributed Building Footprints[J].Int J Geogr Inf Sci, 2020, 34(4): 777-801 doi: 10.1080/13658816.2019.1624761
    [61]
    Yan X, Ai T, Yang M, et al. Graph Convolutional Autoencoder Model for the Shape Coding and Cognition of Buildings in Maps[J]. Int J Geogr Inf Sci, 2020, DOI: 10.1080/13658816.2020.1768260
    [62]
    Chiang Y Y, Knoblock C A. Recognizing Text in Raster Maps[J]. Geoinformatica, 2015, 19(1): 1-27
    [63]
    Duan W, Chiang Y Y, Leyk S, et al. Automatic Alignment of Contemporary Vector Data and Georeferenced Historical Maps Using Reinforcement Learning[J]. Int J Geogr Inf Sci, 2020, 34(4): 824-849 doi: 10.1080/13658816.2019.1698742
    [64]
    Kang Y, Gao S, Roth R E. Transferring Multiscale Map Styles Using Generative Adversarial Networks[J]. Int J Cartogr, 2019, 5(2-3): 115-141 doi: 10.1080/23729333.2019.1615729
    [65]
    Huang X, Xu D, Li Z, et al. Translating Multispectral Imagery to Nighttime Imagery via Conditional Generative Adversarial Networks[OL].https://arxiv.org/pdf/2001.05848v1.pdf, 2019
    [66]
    Jenny B, Heitzler M, Singh D, et al. Cartographic Relief Shading with Neural Networks[OL]. https://arxiv.org/pdf/2010.01256.pdf, 2020
    [67]
    Ganguli S, Garzon P, Glaser N. Geogan: A Conditional Gan with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images[OL].https://arxiv.org/pdf/1902.05611.pdf, 2019
    [68]
    Xu C, Zhao B. Satellite Image Spoofing: Creating Remote Sensing Dataset with Generative Adversarial Networks (Short Paper)[C]. 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 2018
    [69]
    Touya G, Zhang X, Lokhat I. Is Deep Learning the New Agent for Map Generalization?[J]. Int J Cartogr, 2019, 5(2-3):142-157 doi: 10.1080/23729333.2019.1613071
    [70]
    Feng Y, Thiemann F, Sester M. Learning Cartographic Building Generalization with Deep Convolutional Neural Networks[J]. ISPRS Int J Geo-Information, 2019, 8(6): 258 http://www.researchgate.net/publication/333524263_learning_cartographic_building_generalization_with_deep_convolutional_neural_networks
    [71]
    Goodchild M F, Hill L L. Introduction to Digital Gazetteer Research[J]. Int J Geogr Inf Sci, 2008, 22(10): 1 039-1 044 doi: 10.1080/13658810701850497
    [72]
    Hu Y. Geo-Text Data and Data-Driven Geospatial Semantics[J]. Geogr Compass, 2018, 12(11):e12404 doi: 10.1111/gec3.12404
    [73]
    Gao S, Li L, Li W, et al. Constructing Gazetteers from Volunteered Big Geo-Data Based on Hadoop[J]. Comput Environ Urban Syst, 2017, 61: 172-186 http://www.sciencedirect.com/science/article/pii/s0198971514000209
    [74]
    Ju Y, Adams B, Janowicz K, et al. Things and Strings: Improving Place Name Disambiguation from Short Texts by Combining Entity Co-occurrence with Topic Modeling[C].European Knowledge Acquisition Workshop, Bologna, Italy, 2016
    [75]
    Acheson E, Volpi M, Purves R S.Machine Learning for Cross-Gazetteer Matching of Natural Features[J]. Int J Geogr Inf Sci, 2020, 34(4): 708-734 doi: 10.1080/13658816.2019.1599123
    [76]
    Santos R, Murrieta-Flores P, Calado P, et al.Toponym Matching Through Deep Neural Networks[J]. Int J Geogr Inf Sci, 2018, 32(2):324-348 doi: 10.1080/13658816.2017.1390119
    [77]
    Hu Y, Deng C, Zhou Z. A Semantic and Sentiment Analysis on Online Neighborhood Reviews for Understanding the Perceptions of People Toward Their Living Environments[J]. Ann Am Assoc Geogr, 2019, 109(4): 1 052-1 073 doi: 10.1080/24694452.2018.1535886
    [78]
    Huang Y, Li J, Wu G, et al. Quantifying the Bias in Place Emotion Extracted from Photos on Social Networking Sites: A Case Study on a University Campus[J]. Cities, 2020, 102: 102 719 http://www.sciencedirect.com/science/article/pii/S0264275119312818
    [79]
    Gao S, Goodchild M F. Asking Spatial Questions to Identify GIS Functionality[C]. 4th International Conference on Computing for Geospatial Research and Application, San Jose, CA, USA, 2013
    [80]
    Mai G, Janowicz K, Cai L, et al. SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting[J]. Trans GIS, 2020, doi: abs/10.1111/tgis.12629
    [81]
    Scheider S, Ballatore A, Lemmens R. Finding and Sharing GIS Methods Based on the Questions They Answer[J]. Int J Digit Earth, 2019, 12(5): 594-613 doi: 10.1080/17538947.2018.1470688
    [82]
    Mai G, Yan B, Janowicz K, et al. Relaxing Unanswerable Geographic Questions Using a Spatially Explicit Knowledge Graph Embedding Model[C]. The Annual International Conference on Geographic Information Science, Limassol, Cyprus, 2019
    [83]
    Vahedi B, Kuhn W, Ballatore A. Question-Based Spatial Computing—A Case Study[M]//Tapani S, Maribel Y, Santos L, et al. Geospatial Data in a Changing World.Helsinki, Finland: Springer, 2016: 37–50
    [84]
    Wang J, Hu Y, Joseph K. NeuroTPR: A Neuro-net Toponym Recognition Model for Extracting Locations from Social Media Messages[J].Trans GIS, 2020, 24(3):719-735 doi: 10.1111/tgis.12627
    [85]
    Hu Y, Wang J. How Do People Describe Locations During a Natural Disaster: An Analysis of Tweets from Hurricane Harvey[C]. 11th International Conference on Geographic Information Science (GIScience 2021)-Part I, Poznań, Poland, 2020
    [86]
    Zheng Y, Xie X, Ma W Y. GeoLife: A Collaborative Social Networking Service Among User, Location and Trajectory[J]. IEEE Data Eng Bull, 2010, 33(2): 32-39 http://www.researchgate.net/publication/220282575_geolife_a_collaborative_social_networking_service_among_user_location_and_trajectory
    [87]
    Gong P, Liu H, Zhang M L, et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017[J]. Sci Bull, 2019, 64: 370-373 http://www.cqvip.com/qk/86894x/20196/7001840703.html
    [88]
    Yu L, Wang J, Gong P. Improving 30 m Global Land-Cover Map FROM-GLC with Time Series MODIS and Auxiliary Data Sets: A Segmentation-Based Approach[J]. Int J Remote Sens, 2013, 34(16): 5 851-5 867 http://dl.acm.org/citation.cfm?id=2492467
    [89]
    Arundel S T, Li W, Wang S. GeoNat v1.0: A Dataset for Natural Feature Mapping with Artificial Intelligence and Supervised Learning[J]. Trans GIS, 2020, 24(3): 556-572 doi: 10.1111/tgis.12633
    [90]
    Wang J, Hu Y. Enhancing Spatial and Textual Analysis with EUPEG: An Extensible and Unified Platform for Evaluating Geoparsers[J]. Trans GIS, 2019, 23(6): 1 393-1 419 http://ui.adsabs.harvard.edu/abs/arXiv:2007.04524
    [91]
    Wilson J P, Butler K, Gao S, et al. A Five-Star Guide for Achieving Replicability and Reproducibility when Working with GIS Software and Algorithms[J]. Ann Am Assoc Geogr, 2020, DOI: 10.1080/24694452.2020.1806026
    [92]
    Yang Q, Liu Y, Chen T, et al. Federated Machine Learning: Concept and Applications[J]. ACM Trans Intell Syst Technol, 2019, 10(2): 1-19 http://arxiv.org/abs/1902.04885
    [93]
    Cheng X, Wang J, Li H, et al.A Method to Evaluate Task-Specific Importance of Spatio-Temporal Units Based on Explainable Artificial Intelligence[J]. Int J Geogr Inf Sci, 2020, DOI: 10.1080/13658816.2020.1805116
    [94]
    徐增林, 盛泳潘, 贺丽荣, 等.知识图谱技术综述[J].电子科技大学学报, 2016, 45(4): 589-606 http://www.cnki.com.cn/Article/CJFDTotal-DKDX201604012.htm

    Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606 http://www.cnki.com.cn/Article/CJFDTotal-DKDX201604012.htm
    [95]
    Hu Y, Janowicz K, Prasad S, et al.Metadata Topic Harmonization and Semantic Search for Linked-Data-Driven Geoportals: A Case Study Using ArcGIS Online[J]. Trans GIS, 2015, 19(3): 398-416 doi: 10.1111/tgis.12151
    [96]
    乐阳, 李清泉, 郭仁忠.融合式研究趋势下的地理信息教学体系探索[J].地理学报, 2020, 75(8) :1 790-1 796 http://www.cnki.com.cn/Article/CJFDTotal-DLXB202008017.htm

    Yue Yang, Li Qingquan, Guo Renzhong. Curriculum Design for Urban Informatics[J]. Acta Geographica Sinica, 2020, 75(8) :1 790-1 796 http://www.cnki.com.cn/Article/CJFDTotal-DLXB202008017.htm
  • Related Articles

    [1]PU Chuanhao, XU Qiang, JIANG Ya'nan, ZHAO Kuanyao, HE Pan, ZHANG Hanyue, LI Huajin. Analysis of Land Subsidence Distribution and Influencing Factors in Yan'an New District Based on Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1728-1738. DOI: 10.13203/j.whugis20190372
    [2]GUI Dezhu, CHENG Pengfei, WEN Hanjiang, ZHANG Chengcheng. Technology Innovation of Surveying, Mapping and Geoinformation for Natural Resource Management[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 97-100. DOI: 10.13203/j.whugis20180355
    [3]WANG Li, HONG Lijuan, LIU Xinyu, Cheng Yunfei, HUA Yin, WU Xiongbin. Influencing Factors of Ocean Current Inversion with X-Band Wave Monitoring Radar[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1804-1810. DOI: 10.13203/j.whugis20150332
    [4]LI Sipeng, ZHANG Lihua, JIA Shuaidong. A Method for Selecting Aids to Navigation Automatically Based on the Maximal Covering of Their Spatial Influence Domains[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 236-242. DOI: 10.13203/j.whugis20150460
    [5]XIE Jian, ZHU Jianjun. Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1344-1348. DOI: 10.13203/j.whugis20130764
    [6]ZHAO Jianhu, ZHANG Hongmei, YAN Jun, ZHANG Yuqing. Weakening Influence of Residual Error for MBS Sounding[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1184-1187.
    [7]TAO Xiaojing, ZHU Jianjun, TIAN Yumiao. Analysis of Factors Influencing Smoothing Parameter in Semiparametric Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 298-301.
    [8]LIU Yining, LAN Qiuping, FEI Lifan. Road Network Generalization for Increasing Data Based on Unit Influence Domain[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 867-870.
    [9]GUO Qingsheng, YAN Weiyang, LI Shengquan. Approximate Delimitation of Influenced Spatial Regions of Central Cities[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 596-599.
    [10]Huang Jiana. The Estimator or Mean Square Error of Unit Weight Considering the Influence of Initial Datum Error[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 64-74.
  • Cited by

    Periodical cited type(5)

    1. 王钰辉,阳孟杰,周梦杰,周楷淳. 面向地理流的双变量时空扫描统计方法. 测绘科学. 2024(01): 204-215 .
    2. 王峥,程昌秀,李畅. 时空Moran散点图及其在中国干旱时空聚集区识别中的应用. 地球信息科学学报. 2022(07): 1301-1311 .
    3. 张亚楠,龙华,邵玉斌,杜庆治,陈腾飞. 基于历史预警准确率的时空重排扫描最大扫描半径优化方法. 地理与地理信息科学. 2021(04): 16-21 .
    4. 杨威,龙华,王美. 基于历史命中率的时空重排扫描最大搜索半径选取方法及应用实验. 地理与地理信息科学. 2020(02): 22-27 .
    5. 杨振凯,李响,陈达. 时空对象的聚类方法与应用初探. 地理信息世界. 2018(02): 40-44 .

    Other cited types(2)

Catalog

    Article views (6200) PDF downloads (1385) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return