Citation: | GAO Song. A Review of Recent Researches and Reflections on Geospatial Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1865-1874. DOI: 10.13203/j.whugis20200597 |
[1] |
Buchanan B G. A (Very) Brief History of Artificial Intelligence[J].AI Mag, 2005, 26(4): 53-60
|
[2] |
Smith T R. Artificial Intelligence and Its Applicability to Geographical Problem Solving[J]. Prof Geogr, 1984, 36(2):147-158 doi: 10.1111/j.0033-0124.1984.00147.x
|
[3] |
Couclelis H. Artificial Intelligence in Geography: Conjectures on the Shape of Things to Come[J]. Prof Geogr, 1986, 38(1):1-11 doi: 10.1111/j.0033-0124.1986.00001.x
|
[4] |
Openshaw S. Artificial Intelligence in Geography[M]. Chichester, UK: John Wiley & Sons Inc, 1997
|
[5] |
Hinton G E, Salakhutdinov R R.Reducing the Dimensionality of Data with Neural Networks[J].Science, 2006, 313(5 786):504-507
|
[6] |
Lecun Y, Bengio Y, Hinton G. Deep Learning[J]. Nature, 2015, 521(7 553): 436-444
|
[7] |
Janowicz K, Gao S, McKenzie G, et al. GeoAI: Spatially Explicit Artificial Intelligence Techniques for Geographic Knowledge Discovery and Beyond[J]. Int J Geogr Inf Sci, 2020, 34(4): 625-636
|
[8] |
Reichstein M, Camps-Valls G, Stevens B, et al. Deep Learning and Process Understanding for Data-Driven Earth System Science[J]. Nature, 2019, 566(7 743): 195-204 http://www.nature.com/articles/s41586-019-0912-1
|
[9] |
Mao H, Hu Y, Kar B, et al. GeoAI 2017 Workshop Report: The 1st ACM SIGSPATIAL International Workshop on GeoAI[R]. Redondo Beach, CA, USA, 2016
|
[10] |
Hu Y, Gao S, Newsam S D, et al. GeoAI 2018 Workshop Report: The 2nd ACM SIGSPATIAL International Workshop on GeoAI[R]. WA, USA, 2018
|
[11] |
Gao S.AI for Geographic Knowledge Discovery[R]. GeoAI 2019 Workshop Report: The 3nd ACM SIGSPATIAL International Workshop on GeoAI, WA, USA, 2019
|
[12] |
Hu Y, Gao S, Lunga D, et al. GeoAI at ACM SIGSPATIAL: Progress, Challenges, and Future Directions[J]. SIGSPATIAL Spec, 2019, 11(2):5-15 doi: 10.1145/3377000.3377002
|
[13] |
Wachowicz M, Gao S. Machine Learning Approaches[M/OL]//Wilson J. Geogr Inf Sci(Technol Body Knowl 2nd Quart. https://gistbok.ucgis.org/bok-topics/machine-learning-approaches, 2020
|
[14] |
Goodchild M F.Issues in Spatially Explicit Modeling[C]. LUCC Report and Review of an International Workshop, Irvine, California, USA, 2011
|
[15] |
Yan B, Janowicz K, Mai G, et al. A Spatially Explicit Reinforcement Learning Model for Geographic Knowledge Graph Summarization[J]. Trans GIS, 2019, 23(3): 620-640
|
[16] |
Yan B, Janowicz K, Mai G, et al. Xnet+sc: Classifying Places Based on Images by Incorporating Spatial Contexts[C]. 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 2018
|
[17] |
Zammit-Mangion A, Ng T L G, Vu Q, et al. Deep Compositional Spatial Models[OL]. https://arxiv.org/abs/1906.02840, 2019
|
[18] |
Klemmer K, Koshiyama A, Flennerhag S. Augmenting Correlation Structures in Spatial Data Using Deep Generative Models[OL]. https://arxiv.org/abs/1905.09796, 2019
|
[19] |
Rao J, Gao S, Kang Y, et al. LSTM-TrajGAN: A Deep Learning Approach to Trajectory Privacy Protection[C].Leibniz International Proceedings in Informatics, Poznań, Poland, 2020
|
[20] |
Courville B A, Vincent P.Representation Learning: A Review and New Perspectives[J]. IEEE Trans Pattern Anal Mach Intell, 2013, 35(8): 1 798-1 828
|
[21] |
Yan B, Mai G, Janowicz K, et al. From ITDL to Place2Vec—Reasoning About Place Type Similarity and Relatedness by Learning Embeddings from Augmented Spatial Contexts[J]. GIS Proc ACM Int Symp Adv Geogr Inf Syst, 2017, 11:1-10
|
[22] |
Yao Y, Li X, Liu X P, et al. Sensing Spatial Distribution of Urban Land Use by Integrating Points-of-Interest and Google Word2Vec Model[J]. Int J Geogr Inf Sci, 2017, 31(4): 825-848 doi: 10.1080/13658816.2016.1244608
|
[23] |
Liu K, Gao S, Qiu P, et al. Road2Vec: Measuring Traffic Interactions in Urban Road System from Massive Travel Routes[J]. ISPRS Int J Geo-Information, 2017, 6(11):321 http://adsabs.harvard.edu/abs/2017IJGI....6..321L
|
[24] |
Crivellari A, Beinat E. From Motion Activity to Geo-Embeddings: Generating and Exploring Vector Representations of Locations, Traces and Visitors through Large-Scale Mobility Data[J]. ISPRS Int J Geo-Information, 2019, 8(3):134 http://www.mdpi.com/2220-9964/8/3/134
|
[25] |
Jean N, Wang S, Samar A, et al.Tile2Vec: Unsupervised Representation Learning for Spatially Distributed Data[C]. The AAAI Conference on Artificial Intelligence, Hawaii, USA, 2019
|
[26] |
Mai G, Janowicz K, Yan B, et al. Multi-Scale Representation Learning for Spatial Feature Distributions Using Grid Cells[C]. International Conference on Learning Representations, Addis Ababa, Ethiopia, 2019
|
[27] |
Zhu A, Lu G, Liu J, et al. Spatial Prediction Based on Third Law of Geography[J]. Ann GIS, 2018, 24(4): 225-240
|
[28] |
Lam N S N. Spatial Interpolation Methods: A Review[J]. Am Cartogr, 1983, 10(2):129-150
|
[29] |
龚健雅.人工智能时代测绘遥感技术的发展机遇与挑战[J].武汉大学学报·信息科学版, 2018, 43(12): 1 788-1 796 doi: 10.13203/j.whugis20180082
Gong Jianya. Chances and Challenges for Development of Surveying and Remote Sensing in the Age of Artificial Intelligence[J].Geomatics and Information Science of Wuhan University, 2018, 43(12): 1 788-1 796 doi: 10.13203/j.whugis20180082
|
[30] |
Liu Y, Liu X, Gao S, et al. Social Sensing: A New Approach to Understanding Our Socioeconomic Environments[J]. Ann Assoc Am Geogr, 2015, 105(3): 512-530 doi: 10.1080/00045608.2015.1018773
|
[31] |
刘瑜.社会感知视角下的若干人文地理学基本问题再思考[J].地理学报, 2020, 71(4): 564-575 http://www.cnki.com.cn/Article/CJFDTotal-dlxb201604004.htm
Liu Yu.Revisiting Several Basic Geographical Concepts: A Social Sensing Perspective[J]. Acta Geographica Sinica, 2020, 71(4): 564-575 http://www.cnki.com.cn/Article/CJFDTotal-dlxb201604004.htm
|
[32] |
Veres M, Moussa M. Deep Learning for Intelligent Transportation Systems: A Survey of Emerging Trends[J]. IEEE Trans Intell Transp Syst, 2020, 21(8):3 152-3 168 http://ieeexplore.ieee.org/document/8771378
|
[33] |
Zhu D, Cheng X, Zhang F, et al. Spatial Interpolation Using Conditional Generative Adversarial Neural Networks[J]. Int J Geogr Inf Sci, 2020, 34(4): 735-758
|
[34] |
Li M, Lu F, Zhang H, et al. Predicting Future Locations of Moving Objects with Deep Fuzzy-LSTM Networks[J]. Transp A Transp Sci, 2020, 16(1):119-136
|
[35] |
Bao Y, Huang Z, Li L, et al. A BiLSTM-CNN Model for Predicting Users' Next Locations Based on Geotagged Social Media[J]. Int J Geogr Inf Sci, 2020, DOI: 10.1080/13658816.2020.1808896
|
[36] |
Liang Y, Gao S, Cai Y, et al.Calibrating the Dynamic Huff Model for Business Analysis Using Location Big Data[J]. Trans GIS, 2020, 24(3): 681-703
|
[37] |
Xing X, Huang Z, Cheng X M, et al. Mapping Human Activity Volumes Through Remote Sensing Imagery[J]. IEEE J Sel Top Appl Earth Obs Remote Sens, 2020, 13: 5 652-5 668
|
[38] |
Pourebrahim N, Sultana S, Thill J-C, et al. Enhancing Trip Distribution Prediction with Twitter Data: Comparison of Neural Network and Gravity Models[C]. The 2nd ACM SIGSPATIAL International Workshop on AI for Geographic Knowledge Discovery, Seattle, WA, USA, 2018
|
[39] |
Yao X, Gao Y, Zhu D, et al. Spatial Origin-Destination Flow Imputation Using Graph Convolutional Networks[J]. IEEE Trans Intell Transp Syst, 2020(99): 1–11
|
[40] |
Murphy J, Pao Y, Haque A. Image-Based Classification of GPS Noise Level Using Convolutional Neural Networks for Accurate Distance Estimation[C]. The 1st Workshop on Artificial Intelligence and Deep Learning for Geographic Knowledge Discovery, Redondo Beach, CA, USA, 2017
|
[41] |
Zhang F, Wu L, Zhu D, et al. Social Sensing from Street-Level Imagery: A Case Study in Learning Spatio-Temporal Urban Mobility Patterns[J]. ISPRS J Photogramm Remote Sens, 2019, 153: 48-58
|
[42] |
Zhang Y, Cheng T. Graph Deep Learning Model for Network-Based Predictive Hotspot Mapping of Sparse Spatio-Temporal Events[J]. Comput Environ Urban Syst, 2020, 79: 101 403
|
[43] |
Ren Y, Cheng T, Zhang Y. Deep Spatio-Temporal Residual Neural Networks for Road-Network-Based Data Modeling[J]. Int J Geogr Inf Sci, 2019, 33(9): 1 894-1 912
|
[44] |
Zhao L, Song Y J, Zhang Z, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Trans Intell Transp Syst, 2020, 21(9): 3 848-3 858
|
[45] |
刘瑜, 詹朝晖, 朱递, 等[J].集成多源地理大数据感知城市空间分异格局[J].武汉大学学报·信息科学版, 2018, 43(3): 327-335 doi: 10.13203/j.whugis20170383
Liu Yu, Zhan Zhaohui, Zhu Di, et al. Incorporating Multi-source Big Geo-Data to Sense Spatial Heterogeneity Patterns in an Urban Space[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 327-335 doi: 10.13203/j.whugis20170383
|
[46] |
Zhang F, Zu J Y, Hu M Y, et al. Uncovering Inconspicuous Places Using Social Media Check-Ins and Street View Images[J]. Comput Environ Urban Syst, 2020, 81: 101 478
|
[47] |
Helbich M, Yao Y, Liu Y, et al. Using Deep Learning to Examine Street View Green and Blue Spaces and Their Associations with Geriatric Depression in Beijing, China[J]. Environ Int, 2019, 126: 107-117
|
[48] |
Cao R, Tu W, Yang C X, et al. Deep Learning-Based Remote and Social Sensing Data Fusion for Urban Region Function Recognition[J]. ISPRS J Photogramm Remote Sens, 2020, 163: 82-97 http://www.researchgate.net/publication/339866935_Deep_learning-based_remote_and_social_sensing_data_fusion_for_urban_region_function_recognition
|
[49] |
Ye C, Zhang F, Mu L, et al.Urban Function Recognition by Integrating Social Media and Street-Level Imagery[J]. Environ Plan B Urban Anal City Sci, 2020, DOI: 10.1177/2399808320935467
|
[50] |
Law S, Seresinhe C I, Shen Y, et al.Street-Frontage-Net: Urban Image Classification Using Deep Convolutional Neural Networks[J]. Int J Geogr Inf Sci, 2020, 34(4): 681-707 doi: 10.1080/13658816.2018.1555832
|
[51] |
李德仁, 王密, 沈欣, 等.从对地观测卫星到对地观测脑[J].武汉大学学报·信息科学版, 2017, 42(2): 143-149 doi: 10.13203/j.whugis20160526
Li Deren, Wang Mi, Shen Xin, et al. From Earth Observation Satellite to Earth Observation Brain[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 143-149 doi: 10.13203/j.whugis20160526
|
[52] |
Scott G J, England M R, Starms W A, et al. Training Deep Convolutional Neural Networks for Land-Cover Classification of High-resolution Imagery[J]. IEEE Geosci Remote Sens Lett, 2017, 14(4): 549-553 http://www.onacademic.com/detail/journal_1000039827206610_63c2.html
|
[53] |
Huang B, Zhao B, Song Y. Urban Land-Use Mapping Using a Deep Convolutional Neural Network with High Spatial Resolution Multispectral Remote Sensing Imagery[J]. Remote Sens Environ, 2018, 214:73-86 http://www.sciencedirect.com/science/article/pii/S0034425718302074
|
[54] |
Peng B, Meng Z, Huang Q, et al. Patch Similarity Convolutional Neural Network for Urban Flood Extent Mapping Using Bi-Temporal Satellite Multispectral Imagery[J]. Remote Sens, 2019, 11(21): 2 492 http://www.researchgate.net/publication/336809460_Patch_Similarity_Convolutional_Neural_Network_for_Urban_Flood_Extent_Mapping_Using_Bi-Temporal_Satellite_Multispectral_Imagery
|
[55] |
Yuan Q Q, Shen H F, Li T W, et al.Deep Learning in Environmental Remote Sensing: Achievements and Challenges[J]. Remote Sens Environ, 2020, 241: 111 716 http://www.sciencedirect.com/science/article/pii/S0034425720300857
|
[56] |
Yuan Q, Zhang Q, Li J, et al. Hyperspectral Image Denoising Employing a Spatial-Spectral Deep Residual Convolutional Neural Network[J]. IEEE Trans Geosci Remote Sens, 2018, 57(2): 1 205-1 218 http://ieeexplore.ieee.org/document/8454887
|
[57] |
Zhang Q, Yuan Q, Zeng C, et al. Missing Data Reconstruction in Remote Sensing Image with a Unified Spatial-Temporal-Spectral Deep Convolutional Neural Network[J]. IEEE Trans Geosci Remote Sens, 2018, 56(8): 4 274–4 288 http://ieeexplore.ieee.org/document/8316243/references
|
[58] |
王家耀.人工智能时代: 地图学从哪里来到哪里去[C].第三届全国地图学理论与方法研讨会, 广州, 2018
Wang Jiaoyao. The Times of AI: Where Cartography Comes From and Goes to[C].The 3rd National Conference on Cartography Theory and Method, Guangzhou, China, 2018
|
[59] |
Li W, Hsu C Y. Automated Terrain Feature Identification from Remote Sensing Imagery: A Deep Learning Approach[J]. Int J Geogr Inf Sci, 2020, 34(4): 637-660 doi: 10.1080/13658816.2018.1542697
|
[60] |
Xie Y, Cai J, Bhojwani R, et al. A Locally-Constrained Yolo Framework for Detecting Small and Densely-Distributed Building Footprints[J].Int J Geogr Inf Sci, 2020, 34(4): 777-801 doi: 10.1080/13658816.2019.1624761
|
[61] |
Yan X, Ai T, Yang M, et al. Graph Convolutional Autoencoder Model for the Shape Coding and Cognition of Buildings in Maps[J]. Int J Geogr Inf Sci, 2020, DOI: 10.1080/13658816.2020.1768260
|
[62] |
Chiang Y Y, Knoblock C A. Recognizing Text in Raster Maps[J]. Geoinformatica, 2015, 19(1): 1-27
|
[63] |
Duan W, Chiang Y Y, Leyk S, et al. Automatic Alignment of Contemporary Vector Data and Georeferenced Historical Maps Using Reinforcement Learning[J]. Int J Geogr Inf Sci, 2020, 34(4): 824-849 doi: 10.1080/13658816.2019.1698742
|
[64] |
Kang Y, Gao S, Roth R E. Transferring Multiscale Map Styles Using Generative Adversarial Networks[J]. Int J Cartogr, 2019, 5(2-3): 115-141 doi: 10.1080/23729333.2019.1615729
|
[65] |
Huang X, Xu D, Li Z, et al. Translating Multispectral Imagery to Nighttime Imagery via Conditional Generative Adversarial Networks[OL].https://arxiv.org/pdf/2001.05848v1.pdf, 2019
|
[66] |
Jenny B, Heitzler M, Singh D, et al. Cartographic Relief Shading with Neural Networks[OL]. https://arxiv.org/pdf/2010.01256.pdf, 2020
|
[67] |
Ganguli S, Garzon P, Glaser N. Geogan: A Conditional Gan with Reconstruction and Style Loss to Generate Standard Layer of Maps from Satellite Images[OL].https://arxiv.org/pdf/1902.05611.pdf, 2019
|
[68] |
Xu C, Zhao B. Satellite Image Spoofing: Creating Remote Sensing Dataset with Generative Adversarial Networks (Short Paper)[C]. 10th International Conference on Geographic Information Science (GIScience 2018), Melbourne, Australia, 2018
|
[69] |
Touya G, Zhang X, Lokhat I. Is Deep Learning the New Agent for Map Generalization?[J]. Int J Cartogr, 2019, 5(2-3):142-157 doi: 10.1080/23729333.2019.1613071
|
[70] |
Feng Y, Thiemann F, Sester M. Learning Cartographic Building Generalization with Deep Convolutional Neural Networks[J]. ISPRS Int J Geo-Information, 2019, 8(6): 258 http://www.researchgate.net/publication/333524263_learning_cartographic_building_generalization_with_deep_convolutional_neural_networks
|
[71] |
Goodchild M F, Hill L L. Introduction to Digital Gazetteer Research[J]. Int J Geogr Inf Sci, 2008, 22(10): 1 039-1 044 doi: 10.1080/13658810701850497
|
[72] |
Hu Y. Geo-Text Data and Data-Driven Geospatial Semantics[J]. Geogr Compass, 2018, 12(11):e12404 doi: 10.1111/gec3.12404
|
[73] |
Gao S, Li L, Li W, et al. Constructing Gazetteers from Volunteered Big Geo-Data Based on Hadoop[J]. Comput Environ Urban Syst, 2017, 61: 172-186 http://www.sciencedirect.com/science/article/pii/s0198971514000209
|
[74] |
Ju Y, Adams B, Janowicz K, et al. Things and Strings: Improving Place Name Disambiguation from Short Texts by Combining Entity Co-occurrence with Topic Modeling[C].European Knowledge Acquisition Workshop, Bologna, Italy, 2016
|
[75] |
Acheson E, Volpi M, Purves R S.Machine Learning for Cross-Gazetteer Matching of Natural Features[J]. Int J Geogr Inf Sci, 2020, 34(4): 708-734 doi: 10.1080/13658816.2019.1599123
|
[76] |
Santos R, Murrieta-Flores P, Calado P, et al.Toponym Matching Through Deep Neural Networks[J]. Int J Geogr Inf Sci, 2018, 32(2):324-348 doi: 10.1080/13658816.2017.1390119
|
[77] |
Hu Y, Deng C, Zhou Z. A Semantic and Sentiment Analysis on Online Neighborhood Reviews for Understanding the Perceptions of People Toward Their Living Environments[J]. Ann Am Assoc Geogr, 2019, 109(4): 1 052-1 073 doi: 10.1080/24694452.2018.1535886
|
[78] |
Huang Y, Li J, Wu G, et al. Quantifying the Bias in Place Emotion Extracted from Photos on Social Networking Sites: A Case Study on a University Campus[J]. Cities, 2020, 102: 102 719 http://www.sciencedirect.com/science/article/pii/S0264275119312818
|
[79] |
Gao S, Goodchild M F. Asking Spatial Questions to Identify GIS Functionality[C]. 4th International Conference on Computing for Geospatial Research and Application, San Jose, CA, USA, 2013
|
[80] |
Mai G, Janowicz K, Cai L, et al. SE-KGE: A Location-Aware Knowledge Graph Embedding Model for Geographic Question Answering and Spatial Semantic Lifting[J]. Trans GIS, 2020, doi: abs/10.1111/tgis.12629
|
[81] |
Scheider S, Ballatore A, Lemmens R. Finding and Sharing GIS Methods Based on the Questions They Answer[J]. Int J Digit Earth, 2019, 12(5): 594-613 doi: 10.1080/17538947.2018.1470688
|
[82] |
Mai G, Yan B, Janowicz K, et al. Relaxing Unanswerable Geographic Questions Using a Spatially Explicit Knowledge Graph Embedding Model[C]. The Annual International Conference on Geographic Information Science, Limassol, Cyprus, 2019
|
[83] |
Vahedi B, Kuhn W, Ballatore A. Question-Based Spatial Computing—A Case Study[M]//Tapani S, Maribel Y, Santos L, et al. Geospatial Data in a Changing World.Helsinki, Finland: Springer, 2016: 37–50
|
[84] |
Wang J, Hu Y, Joseph K. NeuroTPR: A Neuro-net Toponym Recognition Model for Extracting Locations from Social Media Messages[J].Trans GIS, 2020, 24(3):719-735 doi: 10.1111/tgis.12627
|
[85] |
Hu Y, Wang J. How Do People Describe Locations During a Natural Disaster: An Analysis of Tweets from Hurricane Harvey[C]. 11th International Conference on Geographic Information Science (GIScience 2021)-Part I, Poznań, Poland, 2020
|
[86] |
Zheng Y, Xie X, Ma W Y. GeoLife: A Collaborative Social Networking Service Among User, Location and Trajectory[J]. IEEE Data Eng Bull, 2010, 33(2): 32-39 http://www.researchgate.net/publication/220282575_geolife_a_collaborative_social_networking_service_among_user_location_and_trajectory
|
[87] |
Gong P, Liu H, Zhang M L, et al. Stable Classification with Limited Sample: Transferring a 30-m Resolution Sample Set Collected in 2015 to Mapping 10-m Resolution Global Land Cover in 2017[J]. Sci Bull, 2019, 64: 370-373 http://www.cqvip.com/qk/86894x/20196/7001840703.html
|
[88] |
Yu L, Wang J, Gong P. Improving 30 m Global Land-Cover Map FROM-GLC with Time Series MODIS and Auxiliary Data Sets: A Segmentation-Based Approach[J]. Int J Remote Sens, 2013, 34(16): 5 851-5 867 http://dl.acm.org/citation.cfm?id=2492467
|
[89] |
Arundel S T, Li W, Wang S. GeoNat v1.0: A Dataset for Natural Feature Mapping with Artificial Intelligence and Supervised Learning[J]. Trans GIS, 2020, 24(3): 556-572 doi: 10.1111/tgis.12633
|
[90] |
Wang J, Hu Y. Enhancing Spatial and Textual Analysis with EUPEG: An Extensible and Unified Platform for Evaluating Geoparsers[J]. Trans GIS, 2019, 23(6): 1 393-1 419 http://ui.adsabs.harvard.edu/abs/arXiv:2007.04524
|
[91] |
Wilson J P, Butler K, Gao S, et al. A Five-Star Guide for Achieving Replicability and Reproducibility when Working with GIS Software and Algorithms[J]. Ann Am Assoc Geogr, 2020, DOI: 10.1080/24694452.2020.1806026
|
[92] |
Yang Q, Liu Y, Chen T, et al. Federated Machine Learning: Concept and Applications[J]. ACM Trans Intell Syst Technol, 2019, 10(2): 1-19 http://arxiv.org/abs/1902.04885
|
[93] |
Cheng X, Wang J, Li H, et al.A Method to Evaluate Task-Specific Importance of Spatio-Temporal Units Based on Explainable Artificial Intelligence[J]. Int J Geogr Inf Sci, 2020, DOI: 10.1080/13658816.2020.1805116
|
[94] |
徐增林, 盛泳潘, 贺丽荣, 等.知识图谱技术综述[J].电子科技大学学报, 2016, 45(4): 589-606 http://www.cnki.com.cn/Article/CJFDTotal-DKDX201604012.htm
Xu Zenglin, Sheng Yongpan, He Lirong, et al. Review on Knowledge Graph Techniques[J]. Journal of University of Electronic Science and Technology of China, 2016, 45(4): 589-606 http://www.cnki.com.cn/Article/CJFDTotal-DKDX201604012.htm
|
[95] |
Hu Y, Janowicz K, Prasad S, et al.Metadata Topic Harmonization and Semantic Search for Linked-Data-Driven Geoportals: A Case Study Using ArcGIS Online[J]. Trans GIS, 2015, 19(3): 398-416 doi: 10.1111/tgis.12151
|
[96] |
乐阳, 李清泉, 郭仁忠.融合式研究趋势下的地理信息教学体系探索[J].地理学报, 2020, 75(8) :1 790-1 796 http://www.cnki.com.cn/Article/CJFDTotal-DLXB202008017.htm
Yue Yang, Li Qingquan, Guo Renzhong. Curriculum Design for Urban Informatics[J]. Acta Geographica Sinica, 2020, 75(8) :1 790-1 796 http://www.cnki.com.cn/Article/CJFDTotal-DLXB202008017.htm
|
[1] | PU Chuanhao, XU Qiang, JIANG Ya'nan, ZHAO Kuanyao, HE Pan, ZHANG Hanyue, LI Huajin. Analysis of Land Subsidence Distribution and Influencing Factors in Yan'an New District Based on Time Series InSAR[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1728-1738. DOI: 10.13203/j.whugis20190372 |
[2] | GUI Dezhu, CHENG Pengfei, WEN Hanjiang, ZHANG Chengcheng. Technology Innovation of Surveying, Mapping and Geoinformation for Natural Resource Management[J]. Geomatics and Information Science of Wuhan University, 2019, 44(1): 97-100. DOI: 10.13203/j.whugis20180355 |
[3] | WANG Li, HONG Lijuan, LIU Xinyu, Cheng Yunfei, HUA Yin, WU Xiongbin. Influencing Factors of Ocean Current Inversion with X-Band Wave Monitoring Radar[J]. Geomatics and Information Science of Wuhan University, 2017, 42(12): 1804-1810. DOI: 10.13203/j.whugis20150332 |
[4] | LI Sipeng, ZHANG Lihua, JIA Shuaidong. A Method for Selecting Aids to Navigation Automatically Based on the Maximal Covering of Their Spatial Influence Domains[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 236-242. DOI: 10.13203/j.whugis20150460 |
[5] | XIE Jian, ZHU Jianjun. Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1344-1348. DOI: 10.13203/j.whugis20130764 |
[6] | ZHAO Jianhu, ZHANG Hongmei, YAN Jun, ZHANG Yuqing. Weakening Influence of Residual Error for MBS Sounding[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1184-1187. |
[7] | TAO Xiaojing, ZHU Jianjun, TIAN Yumiao. Analysis of Factors Influencing Smoothing Parameter in Semiparametric Model[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 298-301. |
[8] | LIU Yining, LAN Qiuping, FEI Lifan. Road Network Generalization for Increasing Data Based on Unit Influence Domain[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 867-870. |
[9] | GUO Qingsheng, YAN Weiyang, LI Shengquan. Approximate Delimitation of Influenced Spatial Regions of Central Cities[J]. Geomatics and Information Science of Wuhan University, 2003, 28(5): 596-599. |
[10] | Huang Jiana. The Estimator or Mean Square Error of Unit Weight Considering the Influence of Initial Datum Error[J]. Geomatics and Information Science of Wuhan University, 1986, 11(4): 64-74. |