XIE Jian, ZHU Jianjun. Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1344-1348. DOI: 10.13203/j.whugis20130764
Citation: XIE Jian, ZHU Jianjun. Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1344-1348. DOI: 10.13203/j.whugis20130764

Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method

Funds: The National Natural Science Foundation of China, No. 41274010.
More Information
  • Received Date: December 09, 2013
  • Published Date: October 04, 2015
  • The accuracy of least square estimation can be improved and the rank deficient problem can be eliminated by using equality constraints properly. However, the influence of equality constraints in an ill-conditioned problem is not clear. Therefore, a method to transform the equality-constrained ill-posed to unconstrained problem by eliminating a part of the parameters is proposed in this paper. We firstly analyzed the influence of equality constraints on an ill-posed problem. Subsequently, the new system with equality constraints was verified by means of an example as either ill-conditioned or not depending on the original design matrix and equality constraints. We finally propose a diagnosis-regularization two-step approach to solve the equality-constrained ill-posed problem and validate its feasibility with a simulated data experiment.
  • [1]
    Cui Xizhang. Generalized Surveying Adjustment[M]. Wuhan: Wuhan University Press, 2001:163-170(崔希璋. 广义测量平差[M]. 武汉:武汉大学出版社,2001:163-170)
    [2]
    Tikhonov A N. Regularization of Ill-posed Problem[J]. Dokl Akad Nauk SSSR, 1963, 151(1) : 49-52
    [3]
    Xie Jian, Zhu Jianjun. A New Approach to Constrained Rank-deficient Free Network Adjustment[J]. Engineering of Surveying and Mapping, 2009, 18(2):9-11(谢建,朱建军. 约束秩亏网平差的一种新算法[J]. 测绘工程,2009,18(2):9-11)
    [4]
    Sarkar N. A New Estimator Combining the Ridge Regression and the Restricted Least Squares Methods of Estimation[J]. Comm Statist Theory Methods,1992,21(7):1 987-2 000
    [5]
    Jürgen G. Restricted Ridge Estimation[J]. Statistics & Probabilities Letters, 2003,65(1):57-64
    [6]
    Zhong Zhen. Study on the Restricted Biased Estimation in the Linear Model[D]. Chongqing: Chongqing University, 2005(钟震. 线性模型中的约束型有偏估计的研究[D]. 重庆:重庆大学, 2005)
    [7]
    Xie Jian, Zhu Jianjun. A Regularized Solution and Statistical Properties in Ill-posed Problems with Equality Constraints[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1 440-1 444 (谢建,朱建军. 等式约束病态模型的正则化解及其统计性质[J]. 武汉大学学报·信息科学版,2013,38(12):1 440-1 444)
    [8]
    Group of Adjustment Discipline in School of Geodesy and Geomatics of Wuhan University. Error Theory and Foundation of Surveying Adjustment[M]. Wuhan: Wuhan University Press,2003(武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M]. 武汉:武汉大学出版社,2003)
    [9]
    Guo Jianfeng. Diagnosis and Processing of Ill-posedness in Adjustment Model[M]. Zhengzhou: Information Engineering University, 2002(郭建锋. 测量平差系统病态性的诊断与处理[D]. 郑州:信息工程大学,2002)
    [10]
    Zhang Jinhuai. Parameter Estimation of Linear Models and Its Improvement[M]. Changsha: National University of Defense Technology,1992(张金槐. 线性模型参数估计及其改进[M]. 长沙:国防科技大学出版社,1992)
    [11]
    Yu Zongchou. The Uniformity Theory of Estimation of Variance-Covariance Components[J]. Acta Geodaetica et Cartographica Sinica, 1991,20(3):161-171(於宗俦.方差-协方差分量估计的统一理论[J]. 测绘学报,1991,20(3):161-171)
    [12]
    Chen Xiru, Wang Songgui. Modern Regression Analysis[M]. Hefei: Anhui Education Press,1987(陈希孺,王松桂. 近代回归分析[M]. 合肥:安徽教育出版社,1987)
    [13]
    Gui Qingming, Yao Shaowen, Gu Yongwei, et al. A New Method to Diagnose Multicollinearity Based on Condition Index and Variance Decomposition Proportion(CIVDP)[J]. Acta Geodaetica et Cartographica Sinica, 2006,35(3):210-214(归庆明,姚绍文,顾勇为,等. 诊断复共线性的条件指标-方差分解比法[J]. 测绘学报,2006,35(3):210-214)
    [14]
    Golub G H, Heath M, Wahba G. Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter[J]. Techno Metrics, 1979,21(2):215-223
    [15]
    Han Songhui, Du Lan, Gui Qingming, et al. Characteristics Analysis Approach for Multicollinearity Diagnosis and Its Applications in Orbit Determination of GEO Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):19-26(韩松辉,杜兰,归庆明,等. 诊断复共线性的特征分析法及其在GEO定轨中的应用[J]. 测绘学报,2013, 42(1):19-26)
    [16]
    Hansen P C. Analysis of Discrete Ill-posed Problems by Means of the L-curve[J]. SIAM Review, 1992, 34(4): 561-580
    [17]
    Wang Zhenjie. Determining the Ridge Parameter in a Ridge Estimation Using L-curve Method[J]. Geomatics and Information Science of Wuhan University, 2004,29(3):235-238(王振杰. 用L-曲线法确定岭估计中的岭参数[J]. 武汉大学学报·信息科学版,2004,29(3):235-238)
    [18]
    Zhu Jianjun, Tian Yumiao, Tao Xiaojing, et al. United Expression and Solution of Adjustment Criteria with Parameters[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(1):8-13(朱建军,田玉淼,陶肖静, 等. 带准则参数的平差准则及其统一与解算[J]. 测绘学报,2012,41(1):8-13)
    [19]
    Xu Peiliang. Determination of Surface Gravity Anomalies Using Gradiometric Observables[J]. Geophys J Int , 1992,110(2): 321-332
  • Related Articles

    [1]WANG Leyang, YU Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1233-1240. DOI: 10.13203/j.whugis20170265
    [2]LI Linlin, ZHOU Yongjun, ZHOU Yu. A Weighted Total Least Squares Adjustment Method for Building Regularization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 422-428. DOI: 10.13203/j.whugis20160510
    [3]LIU Chunyang, WANG Jian, WANG Bin, LIU Chao, LIU Jiping. Robust Weight Total Least Squares Algorithm of Correlated Observation Based on Median Parameter Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 378-384. DOI: 10.13203/j.whugis20160516
    [4]XIE Jian, LONG Sichun, LI Li, LI Bochao. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530. DOI: 10.13203/j.whugis20160507
    [5]WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469
    [6]WANG Leyang, XU Guangyu, CHEN Xiaoyong. Total Least Squares Adjustment of Partial Errors-in-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 857-863. DOI: 10.13203/j.whugis20150001
    [7]WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275
    [8]WANG Leyang, XU Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 887-890.
    [9]WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350.
    [10]Wang Renxiang. Effects of Parameters of Weight Function for Blunder Detection by the Recursive Weighted Least Squares Method[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 42-50.
  • Cited by

    Periodical cited type(7)

    1. 陈丽,王岩,邵德盛. 病态加权最小二乘混合模型的k-Liu估计解法. 统计与决策. 2024(08): 17-21 .
    2. 史浩伟,俞克豪,李丽华,李淑慧,杨红磊,罗士淇. 顾及坐标精度的地球自转参数联合解算方法研究. 测绘科学. 2024(03): 1-7 .
    3. 郭春喜,郭鑫伟,聂建亮,王斌,刘晓云,王海涛. 利用GNSS水准成果融合构建中国大陆垂直运动模型. 武汉大学学报(信息科学版). 2023(04): 579-586 .
    4. 宋迎春,宋采薇,左廷英. 带有界不确定性的加权混合估计方法. 武汉大学学报(信息科学版). 2020(07): 949-955 .
    5. 王乐洋,余航. 附有相对权比的加权总体最小二乘联合平差方法. 武汉大学学报(信息科学版). 2019(08): 1233-1240 .
    6. 吴光明,鲁铁定. 病态总体最小二乘靶向奇异值修正法. 大地测量与地球动力学. 2019(08): 856-862 .
    7. 王乐洋,余航. 火山Mogi模型反演的总体最小二乘联合平差方法. 武汉大学学报(信息科学版). 2018(09): 1333-1341 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return