Citation: | XIE Jian, ZHU Jianjun. Influence of Equality Constraints on Ill-conditioned Problems and Constrained Regularization Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1344-1348. DOI: 10.13203/j.whugis20130764 |
[1] |
Cui Xizhang. Generalized Surveying Adjustment[M]. Wuhan: Wuhan University Press, 2001:163-170(崔希璋. 广义测量平差[M]. 武汉:武汉大学出版社,2001:163-170)
|
[2] |
Tikhonov A N. Regularization of Ill-posed Problem[J]. Dokl Akad Nauk SSSR, 1963, 151(1) : 49-52
|
[3] |
Xie Jian, Zhu Jianjun. A New Approach to Constrained Rank-deficient Free Network Adjustment[J]. Engineering of Surveying and Mapping, 2009, 18(2):9-11(谢建,朱建军. 约束秩亏网平差的一种新算法[J]. 测绘工程,2009,18(2):9-11)
|
[4] |
Sarkar N. A New Estimator Combining the Ridge Regression and the Restricted Least Squares Methods of Estimation[J]. Comm Statist Theory Methods,1992,21(7):1 987-2 000
|
[5] |
Jürgen G. Restricted Ridge Estimation[J]. Statistics & Probabilities Letters, 2003,65(1):57-64
|
[6] |
Zhong Zhen. Study on the Restricted Biased Estimation in the Linear Model[D]. Chongqing: Chongqing University, 2005(钟震. 线性模型中的约束型有偏估计的研究[D]. 重庆:重庆大学, 2005)
|
[7] |
Xie Jian, Zhu Jianjun. A Regularized Solution and Statistical Properties in Ill-posed Problems with Equality Constraints[J]. Geomatics and Information Science of Wuhan University, 2013,38(12):1 440-1 444 (谢建,朱建军. 等式约束病态模型的正则化解及其统计性质[J]. 武汉大学学报·信息科学版,2013,38(12):1 440-1 444)
|
[8] |
Group of Adjustment Discipline in School of Geodesy and Geomatics of Wuhan University. Error Theory and Foundation of Surveying Adjustment[M]. Wuhan: Wuhan University Press,2003(武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M]. 武汉:武汉大学出版社,2003)
|
[9] |
Guo Jianfeng. Diagnosis and Processing of Ill-posedness in Adjustment Model[M]. Zhengzhou: Information Engineering University, 2002(郭建锋. 测量平差系统病态性的诊断与处理[D]. 郑州:信息工程大学,2002)
|
[10] |
Zhang Jinhuai. Parameter Estimation of Linear Models and Its Improvement[M]. Changsha: National University of Defense Technology,1992(张金槐. 线性模型参数估计及其改进[M]. 长沙:国防科技大学出版社,1992)
|
[11] |
Yu Zongchou. The Uniformity Theory of Estimation of Variance-Covariance Components[J]. Acta Geodaetica et Cartographica Sinica, 1991,20(3):161-171(於宗俦.方差-协方差分量估计的统一理论[J]. 测绘学报,1991,20(3):161-171)
|
[12] |
Chen Xiru, Wang Songgui. Modern Regression Analysis[M]. Hefei: Anhui Education Press,1987(陈希孺,王松桂. 近代回归分析[M]. 合肥:安徽教育出版社,1987)
|
[13] |
Gui Qingming, Yao Shaowen, Gu Yongwei, et al. A New Method to Diagnose Multicollinearity Based on Condition Index and Variance Decomposition Proportion(CIVDP)[J]. Acta Geodaetica et Cartographica Sinica, 2006,35(3):210-214(归庆明,姚绍文,顾勇为,等. 诊断复共线性的条件指标-方差分解比法[J]. 测绘学报,2006,35(3):210-214)
|
[14] |
Golub G H, Heath M, Wahba G. Generalized Cross-Validation as a Method for Choosing a Good Ridge Parameter[J]. Techno Metrics, 1979,21(2):215-223
|
[15] |
Han Songhui, Du Lan, Gui Qingming, et al. Characteristics Analysis Approach for Multicollinearity Diagnosis and Its Applications in Orbit Determination of GEO Satellites[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42(1):19-26(韩松辉,杜兰,归庆明,等. 诊断复共线性的特征分析法及其在GEO定轨中的应用[J]. 测绘学报,2013, 42(1):19-26)
|
[16] |
Hansen P C. Analysis of Discrete Ill-posed Problems by Means of the L-curve[J]. SIAM Review, 1992, 34(4): 561-580
|
[17] |
Wang Zhenjie. Determining the Ridge Parameter in a Ridge Estimation Using L-curve Method[J]. Geomatics and Information Science of Wuhan University, 2004,29(3):235-238(王振杰. 用L-曲线法确定岭估计中的岭参数[J]. 武汉大学学报·信息科学版,2004,29(3):235-238)
|
[18] |
Zhu Jianjun, Tian Yumiao, Tao Xiaojing, et al. United Expression and Solution of Adjustment Criteria with Parameters[J]. Acta Geodaetica et Cartographica Sinica, 2012,41(1):8-13(朱建军,田玉淼,陶肖静, 等. 带准则参数的平差准则及其统一与解算[J]. 测绘学报,2012,41(1):8-13)
|
[19] |
Xu Peiliang. Determination of Surface Gravity Anomalies Using Gradiometric Observables[J]. Geophys J Int , 1992,110(2): 321-332
|
[1] | WANG Leyang, YU Hang. Weighted Total Least Squares Method for Joint Adjustment Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1233-1240. DOI: 10.13203/j.whugis20170265 |
[2] | LI Linlin, ZHOU Yongjun, ZHOU Yu. A Weighted Total Least Squares Adjustment Method for Building Regularization[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 422-428. DOI: 10.13203/j.whugis20160510 |
[3] | LIU Chunyang, WANG Jian, WANG Bin, LIU Chao, LIU Jiping. Robust Weight Total Least Squares Algorithm of Correlated Observation Based on Median Parameter Method[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 378-384. DOI: 10.13203/j.whugis20160516 |
[4] | XIE Jian, LONG Sichun, LI Li, LI Bochao. An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1526-1530. DOI: 10.13203/j.whugis20160507 |
[5] | WANG Leyang, YU Hang. Application of Total Least Squares Joint Adjustment to Volcano Inversion of Mogi Model[J]. Geomatics and Information Science of Wuhan University, 2018, 43(9): 1333-1341. DOI: 10.13203/j.whugis20160469 |
[6] | WANG Leyang, XU Guangyu, CHEN Xiaoyong. Total Least Squares Adjustment of Partial Errors-in-Variables Model with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 857-863. DOI: 10.13203/j.whugis20150001 |
[7] | WANG Leyang, XU Guangyu. Application of Posteriori Estimation of a Stochastic Model on the Weighted Total Least Squares Problem[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 255-261. DOI: 10.13203/j.whugis20140275 |
[8] | WANG Leyang, XU Caijun. Total Least Squares Adjustment with Weight Scaling Factor[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 887-890. |
[9] | WANG Leyang, XU Caijun, LU Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11): 1346-1350. |
[10] | Wang Renxiang. Effects of Parameters of Weight Function for Blunder Detection by the Recursive Weighted Least Squares Method[J]. Geomatics and Information Science of Wuhan University, 1988, 13(4): 42-50. |