ZHANG Chunsen, ZHANG Yueying, GUO Bingxuan, REN Li. Dense Optical Flow Method for Intelligently Extracting Seamline of Orthophotos[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 261-268. DOI: 10.13203/j.whugis20200573
Citation: ZHANG Chunsen, ZHANG Yueying, GUO Bingxuan, REN Li. Dense Optical Flow Method for Intelligently Extracting Seamline of Orthophotos[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 261-268. DOI: 10.13203/j.whugis20200573

Dense Optical Flow Method for Intelligently Extracting Seamline of Orthophotos

Funds: 

The National Natural Science Foundation of China 92038301

the Natural Science Foundation of Shaanxi Province 2018JM5103

the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resources KF-2018-03-052

More Information
  • Author Bio:

    ZHANG Chunsen, PhD, professor, specializes in photogrammetry computer vision and remote sensing application. E-mail: zhchunsen@aliyun.com

  • Corresponding author:

    GUO Bingxuan, PhD, professor. E-mail: mobilemap@163.com

  • Received Date: July 27, 2021
  • Published Date: February 04, 2022
  •   Objectives  Geometric misalignment is one of the key problems for orthophoto mosaicking. To solve this problem, this paper proposes a regional seamline detection algorithm based on dense optical flow.
      Methods  Firstly, the cost image is constructed with dense optical flow, gradient information and gray information. And the cost image is regarded as a weighted undirected graph. Secondly, the principle of maximum flow and minimum cut is used to search for seamline based on graph-cut model.
      Results  The experiment results show that the seamline cost of the sparse building area greater than 100 pixels obtained by the proposed method only accounts for 0.7% of the path length. And the search efficiency of the proposed method is increased by 17% compared with OrthoVista software.
      Conclusions  The proposed method can automatically avoid passing the building area and the areas with large projection in digital orthophoto map, greatly reduce the probability of geometric dislocation phenomenon of image mosaicking, and realize the intelligence of orthophoto seamline searching.
  • [1]
    靳建立. 基于DSM的遥感影像拼接关键技术研究[D]. 郑州: 信息工程大学, 2009

    Jin Jianli. A Study on DSM-Based Mosaicking Techniques for Remote Sensing Imagery[D]. Zhengzhou: Information Engineering University, 2009
    [2]
    蔡平, 万一, 张永军, 等. 点云信息辅助的航空正射影像自动镶嵌方法[J]. 测绘地理信息, 2021, 46(S1): 200-204 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG2021S1047.htm

    Cai Ping, Wan Yi, Zhang Yongjun, et al. Automated Seamline Detection for Aerial Orthophoto Mosaicking Assisted by Point Cloud Information[J]. Journal of Geomatics, 2021, 46(S1): 200-204 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG2021S1047.htm
    [3]
    荣利会, 戴晨光, 聂海滨, 等. OESM辅助的高分辨率航空正射影像拼接线自动检测算法[J]. 测绘科学技术学报, 2017, 34(2): 162-167 https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201702010.htm

    Rong Lihui, Dai Chenguang, Nie Haibin, et al. Automatic Seamline Detection Algorithm for High Resolution Aerial Orthoimages with the Auxiliary Orthoimage Elevation Synchronization Model[J]. Journal of Geomatics Science and Technology, 2017, 34(2): 162-167 https://www.cnki.com.cn/Article/CJFDTOTAL-JFJC201702010.htm
    [4]
    李朋龙, 邓非, 李海亮, 等. 基于有效区域约束的GPU-CPU协同影像快拼方法[J]. 武汉大学学报·信息科学版, 2018, 43(2): 304-310 doi: 10.13203/j.whugis20150284

    Li Penglong, Deng Fei, Li Hailiang, et al. A Method of GPU-CPU Co-Processing Rapid Images Mosaicking Based on Valid Areas[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 304-310 doi: 10.13203/j.whugis20150284
    [5]
    李婉, 赵双明, 张卫龙, 等. 一种无人机影像滤波分频拼接算法[J]. 武汉大学学报·信息科学版, 2018, 43(6): 943-950 doi: 10.13203/j.whugis20160108

    Li Wan, Zhao Shuangming, Zhang Weilong, et al. A Mosaic Method for UAV Images Based on Filtering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(6): 943-950 doi: 10.13203/j.whugis20160108
    [6]
    杨超. 基于图像分割的高分影像镶嵌线快速生成算法研究[D]. 杭州: 杭州师范大学, 2018

    Yang Chao. Research on Fast Detection of Seam-Line for GF Image via Image Segmentation[D]. Hangzhou: Hangzhou Normal University, 2018
    [7]
    丁锴为, 邹峥嵘, 张云生, 等. 基于图割算法的正射影像镶嵌线自动选择[J]. 测绘与空间地理信息, 2016, 39(9): 54-56 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201609016.htm

    Ding Kaiwei, Zou Zhengrong, Zhang Yunsheng, et al. Automatically Seam-Line Selection for Mosaicking Ortho-Photo via Graph Cut Algorithm[J]. Geomatics & Spatial Information Technology, 2016, 39(9): 54-56 https://www.cnki.com.cn/Article/CJFDTOTAL-DBCH201609016.htm
    [8]
    张莎莎. 基于语义分割的数字正射影像镶嵌及其质量评价方法研究[D]. 武汉: 武汉大学, 2018

    Zhang Shasha. Research on Orthophoto Mosaicking and Quality Evaluation Methods Based on Semantic Segmentation[D]. Wuhan: Wuhan University, 2018
    [9]
    段梦梦. 基于视差图的数字正射影像镶嵌线自动搜索及其质量评价方法研究[D]. 武汉: 武汉大学, 2015

    Duan Mengmeng. Research on Seam Line Detection and Quality Evaluation Methods for Orthophoto Mosaicking Based on Disparity Map[D]. Wuhan: Wuhan University, 2015
    [10]
    宫思伟, 陈时雨, 蔡杨. 最小化最大边权的正射影像镶嵌线自动搜索[J]. 测绘地理信息, 2020, 45(4): 104-109 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202004022.htm

    Gong Siwei, Chen Shiyu, Cai Yang. Seamline Detection for Orthoimage Mosaicking Based on Minimizing the Maximum Edge Weight Algorithm[J]. Journal of Geomatics, 2020, 45(4): 104-109 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXG202004022.htm
    [11]
    Farnebäck G. Two-Frame Motion Estimation Based on Polynomial Expansion[M]//Image Analysis. Berlin, Heidelberg: Springer, 2003
  • Related Articles

    [1]CHENG Penggen, YUE Chen. Evaluation of Urban Ecological Environment and Its Relationship with Human Activities with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1927-1937. DOI: 10.13203/j.whugis20200382
    [2]HU Kailong, LIU Qingwang, CUI Ximin, PANG Yong, MU Xiyun. Regional Forest Canopy Height Estimation Using Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 289-296, 303. DOI: 10.13203/j.whugis20160066
    [3]LI Deren, LUO Hui, SHAO Zhenfeng. Review of Impervious Surface Mapping Using Remote Sensing Technology and Its Application[J]. Geomatics and Information Science of Wuhan University, 2016, 41(5): 569-577,703. DOI: 10.13203/j.whugis20160038
    [4]XinjiangPEI Huan, FANG Shifeng, QIN Zhihao, HOU Chunliang. Method and Application of Ecological Environment Vulnerability Evaluation in Arid Oasis ——A Case Study of Turpan Oasis[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 528-532.
    [5]PANG Xiaoping, E Dongchen, WANG Zipan, SUN Fangdi. GIS-Based Assessment of Eco-environmental Vulnerability of Ice-Free Areas in Antarctica[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1174-1177.
    [6]WU Kaiya, JIN Juliang, WANG Lingjie, WANG Wensheng. Application of Set Pair Analysis Classified Prediction Method to Predicting Dynamic Change of Regional Ecological Footprint[J]. Geomatics and Information Science of Wuhan University, 2008, 33(9): 973-977.
    [7]ZHONG Xiaoqing, ZHAO Yongliang, ZHONG Shan, SI Huan. Dynamic Analysis on China's Ecological Footprint Supply and Demand from 1978 to 2004[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 1022-1026.
    [8]XIE Hongyu, LIU Nianfeng, YAO Ruizhen, SONG Weiwei. Resource Yield Method on Ecological Footprint Analysis[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11): 1018-1021.
    [9]SUN Hua, LI Yunmei, Wang Xiuzhen, NI Shaoxiang. Methods and Applications of Landscape Ecological Evaluation in the Typical Small Watershed's Land Use[J]. Geomatics and Information Science of Wuhan University, 2003, 28(2): 177-181.
    [10]YU Jie, BIAN Fuling, HU Bingqing. Dynamic Simulation on the Relationship Between Socio-economic Development and Eco-environment Based on the Integration of GIS and SD[J]. Geomatics and Information Science of Wuhan University, 2003, 28(1): 18-24.
  • Cited by

    Periodical cited type(4)

    1. 徐洪秀,杨玉忠,王赫,吴洪涛,谭新宇. 三维地籍测绘研究及其标准化探索. 测绘通报. 2024(01): 136-140 .
    2. 刘冰洁,朱敏,孙在宏,吴长彬. 顾及人眼视觉感知特征的三维地籍产权体最优视点选择方法. 地理与地理信息科学. 2023(01): 1-7+61 .
    3. 张衡,赵志刚,朱维,唐骜巍,李泽宇. 面向三维界址编码的产权体无损降维表达方法. 测绘科学. 2023(08): 202-209 .
    4. 王芮,严立,陆文雨. 融合实景三维信息的三维地籍空间模型构建与应用探索. 测绘通报. 2021(S1): 6-9+28 .

    Other cited types(1)

Catalog

    Article views (806) PDF downloads (69) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return