Citation: | HU Kailong, LIU Qingwang, CUI Ximin, PANG Yong, MU Xiyun. Regional Forest Canopy Height Estimation Using Multi-source Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(2): 289-296, 303. DOI: 10.13203/j.whugis20160066 |
[1] |
Morton D, Victoria D, Keller M. Tree Height and Tropical Forest Biomass Estimation[J]. Biogeosciences, 2013, 10(1):8385-8399 http://ntrs.nasa.gov/search.jsp?R=20160001382&qs=N%3D4294927712
|
[2] |
Kohyama T, Suzuki E, Partomihardjo T, et al. Tree Species Differentiation in Growth, Recruitment and Allometry in Relation to Maximum Height in a Bornean Mixed Dipterocarp Forest[J]. Journal of Ecology, 2003, 91(5):797-806 doi: 10.1046/j.1365-2745.2003.00810.x
|
[3] |
Ni X, Zhou Y, Cao C. Mapping Forest Canopy Height over Continental China Using Multi-Source Remote Sensing Data[J]. Remote Sensing, 2015, 7(7):8436-8452 doi: 10.3390/rs70708436
|
[4] |
李德仁, 王长委, 胡月明, 等.遥感技术估算森林生物量的研究进展[J].武汉大学学报·信息科学版, 2012, 37(6):631-635 http://ch.whu.edu.cn/CN/abstract/abstract236.shtml
Li Deren, Wang Changwei, Hu Yueming, et al. General Review on Remote Sensing-Based Biomass Estimation[J]. Geomatics & Information Science of Wuhan University, 2012, 37(6):631-635 http://ch.whu.edu.cn/CN/abstract/abstract236.shtml
|
[5] |
Chopping M, Nolin A, Moisen G G, et al. Forest Canopy Height from the Multiangle Imaging SpectroRadiometer (MISR) Assessed with High Resolution Discrete Return Lidar[J]. Remote Sensing of Environment, 2009, 113(10):2172-2185 doi: 10.1016/j.rse.2009.05.017
|
[6] |
吴红波. 基于星载大光斑LiDAR数据反演森林冠层高度及应用研究[D]. 哈尔滨: 东北林业大学, 2011
Wu Hongbo. Study on Retrieval and Application of Forest Canopy Height Based on Spaceborne Large-footprint LiDAR Data[D]. Haerbin: Northeast Forestry University, 2011
|
[7] |
Baltsavias E P. Airborne Laser Scanning:Basic Relations and Formulas[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1999, 54(S 2/3):199-214 https://www.sciencedirect.com/science/article/pii/S0924271699000155
|
[8] |
Nelson R, Krabill W, Maclean G. Determining Forest Canopy Characteristics Using Airborne Laser Data[J]. Remote Sensing of Environment, 1984, 15(3):201-212 doi: 10.1016/0034-4257(84)90031-2
|
[9] |
Clark M L, Clark D B, Roberts D A. Small-Footprint LiDAR Estimation of Sub-canopy Elevation and Tree Height in a Tropical Rain Forest Landscape[J]. Remote Sensing of Environment, 2004, 91(1):68-89 doi: 10.1016/j.rse.2004.02.008
|
[10] |
段祝庚, 赵旦, 曾源, 等.基于遥感的区域尺度森林地上生物量估算研究[J].武汉大学学报·信息科学版, 2015, 40(10):1400-1408 http://ch.whu.edu.cn/CN/abstract/abstract3355.shtml
Duan Zhugeng, Zhao Dan, Zeng Yuan, et al. Estimation of the Forest Aboveground Biomass at Regional Scale Based on Remote Sensing[J]. Geomatics & Information Science of Wuhan University, 2015, 40(10):1400-1408 http://ch.whu.edu.cn/CN/abstract/abstract3355.shtml
|
[11] |
Pang Y, Lefsky M, Andersen H E, et al. Validation of the ICEsat Vegetation Product Using Crown-area-weighted Mean Height Derived Using Crown Delineation with Discrete Return Lidar Data[J]. Canadian Journal of Remote Sensing, 2008, 34(sup2):471-484 doi: 10.5589/m08-074
|
[12] |
Lefsky M, Harding D, Keller M. Estimates of Forest Canopy Height and Aboveground Biomass Using ICESat[J]. Geophysical Research Letters, 2005, 32, L22S02 doi: 10.1029/2004GL021684
|
[13] |
Lefsky. M A. A Global Forest Canopy Height Map from the Moderate Resolution Imaging Spectroradiometer and the Geoscience Laser Altimeter System[J]. Geophysical Research Letters, 2010, 37(15):1-10 http://www.cabdirect.org/abstracts/20103278680.html
|
[14] |
Simard M, Pinto N, Fisher J B, et al. Mapping Forest Canopy Height Globally with Spaceborne LiDAR[J]. Journal of Geophysical Research, 2011, 116(G4):2156-2202 doi: 10.1029/2011JG001708
|
[15] |
Gleason C J, Im J. Forest Biomass Estimation from Airborne LiDAR Data Using Machine Learning Approaches[J]. Remote Sensing of Environment, 2012, 125:80-91 doi: 10.1016/j.rse.2012.07.006
|
[16] |
Lucht W, Prentice I C, Myneni R B, et al. Climatic Control of the High-latitude Vegetation Greening Trend and Pinatubo Effect[J]. Science, 2002, 296(5573):1687-1689 doi: 10.1126/science.1071828
|
[17] |
Zeng B, Yang T B. Impacts of Climate Warming on Vegetation in Qaidam Area from 1990 to 2003[J]. Environmental Monitoring & Assessment, 2008, 144(1-3):403-417 doi: 10.1007/s10661-007-0003-x
|
[18] |
李海奎, 法蕾.基于分级的全国主要树种树高-胸径曲线模型[J].林业科学, 2011, 47(10):83-90 doi: 10.11707/j.1001-7488.20111013
Li Haikui, Fa Lei. Height-Diameter Model for Major Tree Species in China Using the Classified Height Method[J]. Scientia Silvae Sinicae, 2011, 47(10):83-90 doi: 10.11707/j.1001-7488.20111013
|
[19] |
FAO. Global Ecological Zones for FAO Forest Reporting[R]. Global Forest Resources Assessment, Rome, 2010
|
[20] |
鄂栋臣, 徐莹, 张小红. ICESat卫星及其在南极Dome A地区的应用[J].武汉大学学报·信息科学版, 2007, 32(12):1139-1142 http://ch.whu.edu.cn/CN/abstract/abstract2044.shtml
E Dongchen, Xu Ying, Zhang Xiaohong. ICESat's Performance and Its Application in Dome A Area in Antarctica[J]. Geomatics & Information Science of Wuhan University, 2007, 32(12):1139-1142 http://ch.whu.edu.cn/CN/abstract/abstract2044.shtml
|
[21] |
郭颖. 森林地上生物量的非参数化遥感估测方法优化[D]. 北京: 中国林业科学研究院, 2011
Guo Ying. Optimum Non-parametric Method for Forest Above Ground Biomass Estimation Based on Remote Sensing Data[D]. Beijing: Chinese Academy of Forestry, 2011
|
[22] |
Park T, Kennedy R, Choi S, et al. Application of Physically-Based Slope Correction for Maximum Forest Canopy Height Estimation Using Waveform Lidar across Different Footprint Sizes and Locations:Tests on LVIS and GLAS[J]. Remote Sensing, 2014, 6(7):6566-6586 doi: 10.3390/rs6076566
|
[23] |
Lee S, Nimeister W, Yang W. Physically Based Vertical Vegetation Structure Retrieval from ICESat Data:Validation Using LVIS in White Mountain National Forest, New Hampshire, USA[J]. Remote Sensing of Environment, 2011, 115(11):2776-2785 doi: 10.1016/j.rse.2010.08.026
|
[24] |
Selkowitz D J, Green G, Peterson B, et al. A Multi-sensor Lidar, Multi-spectral and Multi-angular Approach for Mapping Canopy Height in Boreal Forest Regions[J]. Remote Sensing of Environment, 2012, 121(2):458-471 https://www.sciencedirect.com/science/article/pii/S0034425712001137#!
|
[25] |
Yang W, Nimeister W, Lee S. Assessment of the Impacts of Surface Topography, Off-nadir Pointing and Vegetation Structure on Vegetation Lidar Waveforms Using an Extended Geometric Optical and Radiative Transfer Model[J]. Remote Sensing of Environment, 2011, 115(11):2810-2822 doi: 10.1016/j.rse.2010.02.021
|
[26] |
Mountrakis G, Im J, Ogole C. Support Vector Machines in Remote Sensing:A Review[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2011, 66(3):247-259 doi: 10.1016/j.isprsjprs.2010.11.001
|
[27] |
邢艳秋, 王立海.基于ICESat-GLAS完整波形的坡地森林冠层高度反演研究:以吉林长白山林区为例[J].武汉大学学报·信息科学版, 2009, 34(6):696-700 http://ch.whu.edu.cn/CN/abstract/abstract1334.shtml
Xing Yanqiu, Wang Lihai. ICESat-GLAS Full Waveform-based Study on Forest Canopy Height Retrieval in Sloped Area:A Case Study of Forests in Changbai Mountains, Jilin[J]. Geomatics & Information Science of Wuhan University, 2009, 34(6):696-700 http://ch.whu.edu.cn/CN/abstract/abstract1334.shtml
|
[1] | PANG Qipei, WU Yunlong, XU Jingtian, SHI Xuguo, ZHANG Yi. Deep Structural Characteristics and Dynamic Processes of the Ms 6.2 Jishishan Earthquake and Its Adjacent Areas[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 356-367. DOI: 10.13203/j.whugis20240085 |
[2] | YANG Jiuyuan, WEN Yangmao, XU Caijun. Seismogenic Fault Structure of the 2023 Ms 6.2 Jishishan (Gansu,China) Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(2): 313-321. DOI: 10.13203/j.whugis20230501 |
[3] | WU Yunlong, LI Hao, ZHANG Fan, PANG Qipei, ZHANG Yi, YAN Jianguo, CHU Risheng. Analysis of Deep Tectonic Characteristics and Seismogenic Environment of the Ms 6.8 Earthquake in Dingri,Xizang,China[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20250052 |
[4] | YANG Jiuyuan, XU Caijun. Ramp-flat Seismogenic Structure of the 2020 Yutian (Xinjiang, China) MW 6.3 Earthquake Revealed by InSAR Observations[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240482 |
[5] | LI Zhenhong, HAN Bingquan, LIU Zhenjiang, ZHANG Miaomiao, YU Chen, CHEN Bo, LIU Haihui, DU Jing, ZHANG Shuangcheng, ZHU Wu, ZHANG Qin, PENG Jianbing. Source Parameters and Slip Distributions of the 2016 and 2022 Menyuan, Qinghai Earthquakes Constrained by InSAR Observations[J]. Geomatics and Information Science of Wuhan University, 2022, 47(6): 887-897. DOI: 10.13203/j.whugis20220037 |
[6] | LIU Yang, XU Caijun, WEN Yangmao, LI Zhicai. InSAR Inversion and Boundary Element Analysis of the Zadoi Mw 5.9 Earthquake Fault Slip[J]. Geomatics and Information Science of Wuhan University, 2020, 45(11): 1678-1686. DOI: 10.13203/j.whugis20190368 |
[7] | WANG Leyang, LI Haiyan, CHEN Hanqing. Source Parameters and Slip Distribution Inversion of 2013 Lushan Ms 7.0 Earthquake[J]. Geomatics and Information Science of Wuhan University, 2019, 44(3): 347-354. DOI: 10.13203/j.whugis20160485 |
[8] | XU Caijun, HE Ping, WEN Yangmao, ZHANG Lei. Coseismic Deformation and Slip Distribution for 2011 Tohoku-Oki Mw 9.0 Earthquake:Constrained by GPS and InSAR[J]. Geomatics and Information Science of Wuhan University, 2012, 37(12): 1387-1391. |
[9] | Lin Aiwen. The Research on Fault Structure in the Wuhan Area[J]. Geomatics and Information Science of Wuhan University, 1992, 17(3): 69-76. |
[10] | Guo Qingsheng. Structural Principle and Realization by Computer for Areal Regular Pattern[J]. Geomatics and Information Science of Wuhan University, 1992, 17(1): 28-33. |