WEI Haitao, LI Ke, HE Xiaohui, TIAN Zhihui. Integrating Spatial Relationship into a Matrix Factorization Model for POI Recommendation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 681-690. DOI: 10.13203/j.whugis20200355
Citation: WEI Haitao, LI Ke, HE Xiaohui, TIAN Zhihui. Integrating Spatial Relationship into a Matrix Factorization Model for POI Recommendation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 681-690. DOI: 10.13203/j.whugis20200355

Integrating Spatial Relationship into a Matrix Factorization Model for POI Recommendation

Funds: 

The National Key Research and Development Program of China 2018YFB0505000

the Key Research and Develop-ment and Promotion Special Projects of Henan Province (Science and Technology Tackling Key Problems) 192102210124

More Information
  • Author Bio:

    WEI Haitao, PhD, lecturer, specializes in geographic information and smart city. E-mail: zzu_wei@163.com

  • Corresponding author:

    HE Xiaohui, PhD, professor. E-mail: hexh@zzu.edu.cn

  • Received Date: July 15, 2020
  • Published Date: May 04, 2021
  •   Objectives  Point of interest (POI) recommendation is the prevalent personal service in location‑based social network(LBSN), and aims to provide personalized recommendation services by using the information carried by LBSN. The utilization of spatial relationship information as the side information supplies a chance to product better POI recommend. However, thousands of users and POIs in the LBSN make the user‑POI check‑in matrix very large and sparse.In addition, check‑in record data is typical implicit feedback data, which cannot directly reflect the user?s preference. To tackle the aforementioned challenges, we propose a relational matrix factorization model based on cooperative competition matrix factorization (CC‑MF).
      Methods  The CC‑MF model can simulate the relationship between users and POIs, and divides spatial relationships into spatial distance relationship and spatial topological relationship. In order to alleviate the problem of data sparsity, the model excavates the spatial relationships among POIs, POIs and users by integrating spatial relationships. Firstly, we use nonlinear function to establish the spatial distance relationship between users and POIs, which can connect the relationship between users and POIs. Then, k‑nearest neighbor (kNN) algorithm is used to calculate the geo‑neighbors of POI by considering the spatial distance factor of spatial topological relationship, which can further alleviate the sparsity of data. Finally, the spatial relationship is integrated into the matrix factorization model. Meanwhile, the weighted least square method is used as the objective function of the CC‑MF model to relieve the implicit feedback problem. Experiments are carried out on the real‑world check‑in Foursquare datasets. We test the recommendation performance of the proposed model and baseline methods, and analyze the crucial influence of different spatial relationships on POI recommendation. The precision and recall are used as evaluation metrics.
      Results  The results show that: (1) The CC‑MF model significantly improves the precision and recall of the recommendation results. (2) Considering the spatial distance factor of the spatial topological relationship can further improve the performance of the recommendation system.
      Conclusions  Therefore, CC‑MF model can make use of spatial relationship better and more comprehensive.The proposed CC‑MF model has better scalability and better interpretability, and can alleviate the problems of data sparsity and implicit feedback usage.
  • [1]
    Bobadilla J, Ortega F, Hernando A, et al. Recommender Systems Survey[J]. Knowledge‑Based Systems, 2013, 46: 109-132
    [2]
    Lu J, Wu D, Mao M, et al. Recommender System Application Developments: A Survey[J]. Decision Support Systems, 2015, 74: 12-32 doi: 10.1016/j.dss.2015.03.008
    [3]
    Zhang C, Wang K. POI Recommendation Through Cross-Region Collaborative Filtering[J]. Knowle‑ dge and Information Systems, 2016, 46(2): 369-387 doi: 10.1007/s10115-015-0825-8
    [4]
    Cai L, Xu J, Liu J, et al. Integrating Spatial and Temporal Contexts into a Factorization Model for POI Recommendation[J]. International Journal of Geographical Information Science, 2018, 32(3): 524-546 doi: 10.1080/13658816.2017.1400550
    [5]
    宁津生, 吴学群, 刘子尧. 顾及道路通达性和时间成本的多用户位置推荐[J]. 武汉大学学报·信息科学版, 2019, 44(5): 633-639 doi: 10.13203/j.whugis20190026

    Ning Jinsheng, Wu Xuequn, Liu Ziyao. Multi-user Location Recommendation Considering Road Accessibility and Time-Cost[J]. Geomatics and Information Science of Wuhan University, 2019, 44(5): 633-639 doi: 10.13203/j.whugis20190026
    [6]
    朱敬华, 明骞. LBSN中融合信任与不信任关系的兴趣点推荐[J]. 通信学报, 2018, 39(7): 157-165 https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201807016.htm

    Zhu Jinghua, Ming Qian. POI Recommendation by Incorporating Trust-Distrust Relationship in LBSN[J]. Journal on Communications, 2018, 39(7): 157-165 https://www.cnki.com.cn/Article/CJFDTOTAL-TXXB201807016.htm
    [7]
    廖国琼, 姜珊, 周志恒, 等. 基于位置社会网络的双重细粒度兴趣点推荐[J]. 计算机研究与发展, 2017, 54(11): 2 600-2 610 doi: 10.7544/issn1000-1239.2017.20160502

    Liao Guoqiong, Jiang Shan, Zhou Zhiheng, et al. Double Fine-Granularity POI Recommendation on Location-Based Social Networks[J]. Journal of Computer Research and Development, 2017, 54(11): 2 600-2 610 doi: 10.7544/issn1000-1239.2017.20160502
    [8]
    Baral R, Li T. Exploiting the Roles of Aspects in Personalized POI Recommender Systems[J]. Data Mining and Knowledge Discovery, 2018, 32(2): 320-343 doi: 10.1007/s10618-017-0537-7
    [9]
    王艳东, 李昊, 王腾, 等. 基于社交媒体的突发事件应急信息挖掘与分析[J]. 武汉大学学报·信息科学版, 2016, 41(3): 290-297 doi: 10.13203/j.whugis20140804

    Wang Yandong, Li Hao, Wang Teng, et al. The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 290-297 doi: 10.13203/j.whugis20140804
    [10]
    禹文豪, 艾廷华, 杨敏, 等. 利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J]. 武汉大学学报·信息科学版, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092

    Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 doi: 10.13203/j.whugis20140092
    [11]
    Hu L, Sun A, Liu Y. Your Neighbors Affect Your Ratings: On Geographical Neighborhood Influence to Rating Prediction[C]//The 37th International ACM SIGIR Conference on Research and Development in Information Retrieval, Gold Coast Queensland, Australia, 2014
    [12]
    Ye M, Yin P, Lee W-C, et al.Exploiting Geographical Influence for Collaborative Point-of-Interest Re‑ commendation[C]//The 34th International ACM SIGIR Conference on Research and Development in Information Retrieval, Beijing, China, 2011
    [13]
    Yuan Q, Cong G, Ma Z, et al. Time-Aware Point-of-Interest Recommendation[C]//The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013
    [14]
    Miller H J. Tobler?s First Law and Spatial Analysis[J]. Annals of the Association of American Geographers, 2004, 94(2): 284-289 doi: 10.1111/j.1467-8306.2004.09402005.x
    [15]
    Si Y, Zhang F, Liu W.An Adaptive Point-of-Interest Recommendation Method for Location-Based Social Networks Based on User Activity and Spatial Features[J]. Knowledge‑Based Systems, 2019, 163: 267-282 http://www.sciencedirect.com/science/article/pii/S0950705118304283
    [16]
    Li X, Jiang M, Hong H, et al. A Time-Aware Personalized Point-of-Interest Recommendation via High-Order Tensor Factorization[J]. ACM Transactions on Information System, 2017, 35(4): 1-23
    [17]
    王楠, 李金宝, 刘勇, 等. TPR-TF: 基于张量分解的时间敏感兴趣点推荐模型[J]. 吉林大学学报(工学版), 2019, 49(3): 920-933 https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201903032.htm

    Wang Nan, Li Jinbao, Liu Yong, et al. TPR-TF: Time-Aware Point of Interest Recommendation Model Based on Tensor Factorization[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(3): 920-933 https://www.cnki.com.cn/Article/CJFDTOTAL-JLGY201903032.htm
    [18]
    Ye M, Liu X, Lee W C. Exploring Social Influence for Recommendation a Generative Model Approach[C]//The 35th International ACM SIGIR Conferen‑ ce on Research and Development in Information Retrieval, Portland, USA, 2012
    [19]
    Guo J, Zhang W, Fan W, et al. Combining Geographical and Social Influences with Deep Learning for Personalized Point-of-Interest Recommendation[J]. Journal of Management Information Systems, 2018, 35(4): 1 121-1 153 doi: 10.1080/07421222.2018.1523564
    [20]
    Wu R, Luo G, Yang Q, et al. Learning Individual Moving Preference and Social Interaction for Location Prediction[J]. IEEE Access, 2018, 6: 10 675-10 687 doi: 10.1109/ACCESS.2018.2805831
    [21]
    Gao S. Spatiotemporal Analytics for Exploring Human Mobility Patterns and Urban Dynamics in the Mobile Age[J]. Spatial Cognition and Computation, 2014, 15(2): 86-114 doi: 10.1080/13875868.2014.984300
    [22]
    Gao R, Li J, Du B, et al. A Synthetic Recommendation Model for Point-of-Interest on Location-Based Social Networks: Exploiting Contextual Information and Review[J]. Journal of Computer Research and Development, 2016, 53(4): 752-763 http://www.researchgate.net/publication/303128375_A_synthetic_recommendation_model_for_point-of-interest_on_location-based_social_networks_exploiting_contextual_information_and_review
    [23]
    彭宏伟, 靳远远, 吕晓强, 等. 一种基于矩阵分解的上下文感知POI推荐算法[J]. 计算机学报, 2019, 42(8): 1 797-1 811 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201908009.htm

    Peng Hongyuan, Jin Yuanyuan, Lü Xiaoqiang, et al. Context-Aware POI Recommendation Based on Matrix Factorization[J]. Chinese Journal of Computers, 2019, 42(8): 1 797-1 811 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201908009.htm
    [24]
    Xing S, Liu F, Zhao X, et al. Points-of-Interest Recommendation Based on Convolution Matrix Factorization[J]. Applied Intelligence, 2018, 48(8): 2 458-2 469 doi: 10.1007/s10489-017-1103-0
    [25]
    Pan R, Zhou Y, Cao B, et al. One-class Collaborative Filtering[C]// The 8th IEEE International Conference on Data Mining, Pisa, Italy, 2008
    [26]
    Hu Y, Koren Y, Volinsky C.Collaborative Filtering for Implicit Feedback Datasets[C]// The 8th IEEE International Conference on Data Mining, Pisa, Italy, 2008
    [27]
    Liang D, Charlin L, Mcinerney J, et al. Modeling User Exposure in Recommendation[C]//The 25th International Conference on World Wide Web, Montréal Québec, Canada, 2016
    [28]
    Li X, Cong G, Li X L, et al. Rank-GeoFM: A Ranking Based Geographical Factorization Method for Point of Interest Recommendation [C]//The 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, Santiago, Chile, 2015
    [29]
    Lian D, Zhao C, Xie X, et al. GeoMF: Joint Geographical Modeling and Matrix Factorization for Point-of-Interest Recommendation[C]//The 20th ACM SIGKDD International Conference on Knowle‑ dge Discovery and Data Mining, New York, USA, 2014
    [30]
    Lee J, Kim S, Lebanon G, et al. LLORMA: Local Low-Rank Matrix Approximation[J]. The Journal of Machine Learning Researcch, 2016, 17(1): 442-465
    [31]
    Hao M. An Experimental Study on Implicit Social Recommendation[C]//The 36th International ACM SIGIR Conference on Research and Development in Information Retrieval, Dublin, Ireland, 2013
    [32]
    He X, Liao L, Zhang H, et al. Neural Collaborative Filtering [C]//The 26th International Conferen‑ ce on World Wide Web, Perth, Australia, 2017
    [33]
    Zhang Z, Zou C, Ding R, et al. VCG: Exploiting Visual Contents and Geographic Influence for Point-of-Interest Recommendation[J]. Neurocomputing, 2019, 357: 53-65 doi: 10.1016/j.neucom.2019.04.079
    [34]
    Qian T, Liu B, Nguyen Q V H, et al. Spatiotemporal Representation Learning for Translation-Based POI Recommendation[J]. ACM Transactions on Information System, 2019, 37(2): 1-24 doi: 10.1145/3295499
    [35]
    Wang H, Shen H, Ouyang W, et al. Exploiting POI-specific Geographical Influence for Point-of-Interest Recommendation[C]//The 27th International Joint Conference on Artificial Intelligence, Stockholm, Sweden, 2018
    [36]
    Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37 doi: 10.1109/MC.2009.263
    [37]
    柴彦威, 张雪, 孙道胜. 基于时空间行为的城市生活圈规划研究: 以北京市为例[J]. 城市规划学刊, 2015(3): 61-69 https://www.cnki.com.cn/Article/CJFDTOTAL-CXGH201503009.htm

    Chai Yanwei, Zhang Xue, Sun Daosheng. A Study on Life Circle Planning Based on Space Time Beha‑ vioural Analysis: A Case Study of Beijing[J]. Urban Planning Forum, 2015(3): 61-69 https://www.cnki.com.cn/Article/CJFDTOTAL-CXGH201503009.htm
    [38]
    Zhou D, Wang B, Rahimi S M, et al. A Study of Recommending Locations on Location-based Social Network by Collaborative Filtering[C]//The 25th Canadian Conference on Artificial Intelligence, Toronto, Canada, 2012
  • Related Articles

    [1]JIANG Tao, XU Shenghua, LI Xiaoyan, ZHANG Zhiran, WANG Yong, LUO An, HE Xuan. POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. DOI: 10.13203/j.whugis20220658
    [2]MAO Zhengyuan, FAN Linna, LI Lin. Methodological Research on Measuring Distance Uncertainties in Two-Dimensional Space[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 1969-1977. DOI: 10.13203/j.whugis20220131
    [3]XUE Shuqiang, YANG Yuanxi. Generalized Inverse Distance Weighting Methodfor Spatial Interpolation[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1435-1439.
    [4]JIN Biao, HU Wenlong. A Quantified Model for Spatial Relationships[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 879-882.
    [5]WANG Haijun, HE Sanwei, ZHANG Wenting, DENG Yu. Urban Cellular Automata Model with Considering the Distance of Obstacle Space and Regional Disparity[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 999-1002.
    [6]HU Peng, FAN Qingsong, HU Hai. Distance Transformation and Voronoi Generation on Earth Ellipsoid——Metrics of Geographic Space[J]. Geomatics and Information Science of Wuhan University, 2007, 32(9): 825-828.
    [7]DENG Min, NIU Shulian, LI Zhilin. A Generalized Hausdorff Distance for Spatial Objects in GIS[J]. Geomatics and Information Science of Wuhan University, 2007, 32(7): 641-645.
    [8]RUAN Zhimin, SUN Zhenbing. Spatial Information Publication Based on Oracle Spatial and SVG[J]. Geomatics and Information Science of Wuhan University, 2004, 29(2): 161-164.
    [9]Chen Jun, Guo Wei. A Matrix for Describing Topological Relationships Between 3D Spatial Features[J]. Geomatics and Information Science of Wuhan University, 1998, 23(4): 359-363.
    [10]Zhao Wenguang. A Solution of a Direct Geodetic Problem in Trilateration with Median Distances from Electromagnetic Measurements[J]. Geomatics and Information Science of Wuhan University, 1987, 12(2): 87-97.
  • Cited by

    Periodical cited type(5)

    1. 钟雷洋,周颖,高松,夏吉喆,李珍,李晓明,乐阳,李清泉. 突发公共卫生事件下的人口流动模式变化识别. 武汉大学学报(信息科学版). 2024(07): 1237-1249 .
    2. 姜涛,徐胜华,李晓燕,张志然,王勇,罗安,何璇. 时空序列嵌入门控扩张残差网络的兴趣点推荐. 武汉大学学报(信息科学版). 2024(09): 1683-1692 .
    3. 刘万增,陈杭,任加新,张兆江,李然,赵婷婷,翟曦,朱秀丽. 基于混合智能的街景影像知识提取方法. 测绘学报. 2024(09): 1817-1828 .
    4. 邓玉洁. 一种隐私保护机制的POI推荐模型分析. 微型电脑应用. 2024(12): 312-316 .
    5. 李华孝杨,徐青,王卓苧,朱新铭,黄文君. 一种融合用户空间行为特征的兴趣点推荐算法. 测绘科学技术学报. 2024(06): 674-680 .

    Other cited types(10)

Catalog

    Article views (982) PDF downloads (126) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return