JIANG Tao, XU Shenghua, LI Xiaoyan, ZHANG Zhiran, WANG Yong, LUO An, HE Xuan. POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. DOI: 10.13203/j.whugis20220658
Citation: JIANG Tao, XU Shenghua, LI Xiaoyan, ZHANG Zhiran, WANG Yong, LUO An, HE Xuan. POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. DOI: 10.13203/j.whugis20220658

POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network

More Information
  • Received Date: June 03, 2023
  • Available Online: July 05, 2023
  • Objectives 

    Personalized point of interest (POI) recommendation is a vital service in location-based social network. It can effectively use the sequence and spatiotemporal context information of check-in data to discover movement patterns and preferences of users.

    Methods 

    This paper proposes a probabilistic generative model with embedded spatiotemporal conditions to fully exploit the long-term dependency between personalized spatiotemporal preferences and sequential check-in sequences of users, constructs a gated dilation residual network, and implements a POI recommendation method based on gated dilation residual network. The method in this paper learns check-in sequences of users through a gated dilation residual network. It mines and captures the spatiotemporal patterns, sequence preferences and temporal preferences constrained by the spatial distance and time interval of sequential check-in behavior of users.

    Results 

    The proposed method shows significant improvements on the Foursquare and Instagram datasets. Compared to the best-performing algorithm NextItNet, our method demonstrates noticeable enhancements in terms of recall, precision, F1 score, and normalized discounted cumulative gain. On the Foursquare dataset, we achieve improvements ranging from 1.52% to 24.95%. On the Instagram dataset, the improvements range from 7.06% to 42.47%.

    Conclusions 

    The proposed method is more suitable for mining the long-term dependency relationships in sequential check-in behavior of users. It effectively incorporates spatial distance and temporal interval factors, thereby improving the accuracy of POI recommendation.

  • [1]
    魏海涛, 李柯, 赫晓慧, 等. 融入空间关系的矩阵分解POI推荐模型[J]. 武汉大学学报(信息科学版), 2021, 46(5): 681-690.

    Wei Haitao, Li Ke, He Xiaohui, et al. Integrating Spatial Relationship into a Matrix Factorization Model for POI Recommendation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 681-690.
    [2]
    Liu Y D, Pham T A N, Cong G, et al. An Experimental Evaluation of Point-of-Interest Recommendation in Location-Based Social Networks[J]. Proceedings of the VLDB Endowment, 2017, 10(10): 1010-1021.
    [3]
    Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian Personalized Ranking from Implicit Feedback[C]//The 25th Conference on Uncertainty in Artificial Intelligence. Montreal, Quebec, Canada, 2009.
    [4]
    Feng S S, Li X T, Zeng Y F, et al. Personalized Ranking Metric Embedding for Next New POI Recommendation[C]//The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015.
    [5]
    宋亚伟, 司亚利, 刘文远, 等. 融合时间特征和协同过滤的兴趣点推荐算法[J]. 小型微型计算机系统, 2016, 37(6): 1153-1158.

    Song Yawei, Si Yali, Liu Wenyuan, et al. Point-of-Interest Recommendation Algorithm Combining Temporal Features and Collaborative Filtering[J]. Journal of Chinese Computer Systems, 2016, 37(6): 1153-1158.
    [6]
    包玄, 陈红梅, 肖清. 融入时间的兴趣点协同推荐算法[J]. 计算机应用, 2021, 41(8): 2406-2411.

    Bao Xuan, Chen Hongmei, Xiao Qing. Time-Incorporated Point-of-Interest Collaborative Recommendation Algorithm[J]. Journal of Computer Applications, 2021, 41(8): 2406-2411.
    [7]
    任星怡, 宋美娜, 宋俊德. 基于用户签到行为的兴趣点推荐[J]. 计算机学报, 2017, 40(1): 28-51.

    Ren Xingyi, Song Meina, Song Junde. Point-of-Interest Recommendation Based on the User Check-in Behavior[J]. Chinese Journal of Computers, 2017, 40(1): 28-51.
    [8]
    张国明, 王俊淑, 江南, 等. 关注点推荐算法的霍克斯过程法[J]. 测绘学报, 2018, 47(9): 1261-1269.

    Zhang Guoming, Wang Junshu, Jiang Nan, et al. A Point-of-Interest Recommendation Method Based on Hawkes Process[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1261-1269.
    [9]
    何颖, 王卓然, 周旭, 等. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639.

    He Ying, Wang Zhuoran, Zhou Xu, et al. Point of Interest Recommendation Algorithm Integrating Social Geographical Information Based on Weighted Matrix Factorization[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9): 2632-2639.
    [10]
    Gao R, Li J, Li X F, et al. A Personalized Point-of-Interest Recommendation Model via Fusion of Geo-social Information[J]. Neurocomputing, 2018, 273: 159-170.
    [11]
    Cheng C, Yang H Q, Lyu M R, et al. Where You Like to Go Next: Successive Point-of-Interest Recommendation[C]//The 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 2013.
    [12]
    Cai L, Xu J, Liu J, et al. Integrating Spatial and Temporal Contexts into a Factorization Model for POI Recommendation[J]. International Journal of Geographical Information Science, 2018, 32(3): 524-546.
    [13]
    Fan D Z, Dong Y, Zhang Y S. Satellite Image Matching Method Based on Deep Convolutional Neural Network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100.
    [14]
    Gong J Y, Ji S P. Photogrammetry and Deep Learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1): 1-15.
    [15]
    Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
    [16]
    Zhang S, Yao L N, Sun A X, et al. Deep Learning Based Recommender System: A Survey and New Perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
    [17]
    郭旦怀, 张鸣珂, 贾楠, 等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1890-1902.

    Guo Danhuai, Zhang Mingke, Jia Nan, et al. Survey of Point-of-Interest Recommendation Research Fused with Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1890-1902.
    [18]
    Wang X Y, Liu Y H, Zhou X, et al. Long- and Short-Term Preference Modeling Based on Multi-level Attention for Next POI Recommendation[J]. ISPRS International Journal of Geo⁃Information, 2022, 11(6): 323.
    [19]
    Cho K, van Merrienboer B, Gulcehre C, et al. Learning Phrase Representations Using RNN Encoder⁃Decoder for Statistical Machine Translation[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014.
    [20]
    Liu Q, Wu S, Wang L, et al. Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 194-200.
    [21]
    van den Oord A, Dieleman S, Zen H G, et al. WaveNet: A Generative Model for Raw Audio[EB/OL]. [2016-03-04]. http://arxiv.org/abs/1609.03499
    [22]
    Yuan F J, Karatzoglou A, Arapakis I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]//The 12th ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 2019.
    [23]
    Li J C, Wang Y J, McAuley J. Time Interval Aware Self-Attention for Sequential Recommendation[C]//The 13th International Conference on Web Search and Data Mining, Houston, USA, 2020.
    [24]
    Shen Z P, Zhang Y M, Lu J W, et al. SeriesNet: A Generative Time Series Forecasting Model[C]//International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018.
    [25]
    Zhang T T, Zhao P P, Liu Y C, et al. Feature-Level Deeper Self-attention Network for Sequential Recommendation[C]//The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019.
    [26]
    Zhao P P, Luo A J, Liu Y C, et al. Where to Go Next: A Spatiotemporal Gated Network for Next POI Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2512-2524.
    [27]
    Luo Y T, Liu Q, Liu Z C. STAN: Spatiotemporal Attention Network for Next Location Recommendation[C]//The Web Conference, Ljubljana, Slovenia, 2021.
    [28]
    He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016.
  • Related Articles

    [1]ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085
    [2]ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078
    [3]KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856
    [4]ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836.
    [5]ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944.
    [6]CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477.
    [7]HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536.
    [8]CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296.
    [9]DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722.
    [10]ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130.
  • Cited by

    Periodical cited type(28)

    1. 李岚,朱锋,刘万科,张小红. 城市分类场景的GNSS伪距随机模型构建及其定位性能分析. 武汉大学学报(信息科学版). 2025(03): 545-553 .
    2. 苑晓峥,徐爱功,高猛,祝会忠. 基于低成本终端抗差速度约束差分定位算法. 大地测量与地球动力学. 2024(01): 27-34 .
    3. 曲利红,李俊芹. 通用智能技术路线下的人机传播应用. 电视技术. 2024(03): 176-179 .
    4. 刘一,刘敏,边少锋,翟国君,周威. 北斗低成本接收机单频PPP海上定位性能分析. 海洋测绘. 2024(03): 68-72+82 .
    5. 张宝,吴泓正,邸越超,张传定. Android智能手机GNSS定位研究进展. 测绘科学. 2024(05): 1-14 .
    6. 侯雪,张献志,叶远斌. 基于GDCORS的北斗终端高精度定位算法实现及性能分析. 地理空间信息. 2024(08): 72-75 .
    7. 孙俊锋,穆宏波,于先文,廖鹏,吴焱泽. 顾及系统误差影响的智能手机GNSS观测值质量分析. 测绘工程. 2024(05): 43-49 .
    8. 孙俊锋,吴焱泽,于先文,廖鹏,叶嘉宁,曹嘉瑞. 基于北斗的智能手机内河航道高精度定位软件研发. 现代测绘. 2024(03): 13-17 .
    9. 尹昊华,雷博,连宏亮,徐邦岁,曾翔强. 基于安卓智能手机的高精度定位系统研发及测试. 国土资源导刊. 2024(03): 9-17 .
    10. 祝会忠,孙沐凡,李军. GNSS低成本智能终端抗差自适应差分定位算法. 导航定位学报. 2024(06): 10-19 .
    11. 王瑞光,王中元,胡超,王阳阳,刘冰雨. 智能手机BDS-3/GPS数据质量及SPP性能分析. 大地测量与地球动力学. 2023(02): 168-172 .
    12. 孟庆庆,郭德普,胡洁,薄伟伟. 移动GIS在黄委直管河道确权划界中的应用. 水利信息化. 2023(02): 44-49 .
    13. 徐彦田,刘巍峰,李玉星,姜鼎璇. BDS/GPS/GAL智能手机RTK动态定位算法. 无线电工程. 2023(05): 1061-1067 .
    14. 王甫红,栾梦杰,程雨欣,祝浩祈,赵广越,张万威. 城市环境下智能手机车载GNSS/MEMS IMU紧组合定位算法. 武汉大学学报(信息科学版). 2023(07): 1106-1116 .
    15. 郑东,汪梦月,杨中皇. SM3国密算法在Android内核的汇编语言快速实现. 西安邮电大学学报. 2023(03): 57-62 .
    16. 逯遥,聂志喜,王振杰,徐晓飞,张远帆,王翔. 单/双频混合数据的Android手机精密单点定位方法. 测绘科学. 2023(08): 64-71+129 .
    17. 傅鑫榕,王甫红,郭磊,栾梦杰,祝浩祈. 不同电离层模型对智能手机实时PPP精度的影响分析. 测绘地理信息. 2023(06): 26-31 .
    18. 葛在宸,王明华. 基于智能手机GNSS伪距定位的运动距离和速度确定. 江西科学. 2023(06): 1124-1130 .
    19. 邱树素,顾桢,章怿钦,叶俊华. 基于手机内置传感器的相对高程模型. 北京测绘. 2023(12): 1676-1682 .
    20. 董少敏,辛宪会,刘杰,陈文哲,卢为选. 便携式GNSS接收机集成方案及其定位精度分析. 海洋测绘. 2022(03): 56-60 .
    21. 甘露,王志斌,张少波,韩明敏,陈攀,黄威翰. Android智能手机间相对定位性能分析. 测绘工程. 2022(05): 54-60 .
    22. 李阿红. 基于混合神经网络的Android软件缺陷精准预测研究. 自动化与仪器仪表. 2022(08): 33-36+41 .
    23. 张小红,陶贤露,王颖喆,刘万科,朱锋. 城市场景智能手机GNSS/MEMS融合车载高精度定位. 武汉大学学报(信息科学版). 2022(10): 1740-1749 .
    24. 王怡欣,刘晖,钱闯,范潇云. 一种基于智能手机的实时高精度定位系统开发与车载应用测试. 测绘通报. 2022(10): 56-61 .
    25. 曾树林,匡翠林. 智能手机RTK定位软件实现及应用试验. 全球定位系统. 2022(05): 72-80 .
    26. 祝会忠,李骏鹏,李军. 智能手机GNSS多系统多频实时动态定位方法. 测绘科学. 2022(09): 8-19 .
    27. 舒宝,义琛,王利,许豪,田云青. 华为P30手机GPS/BDS/GLONASS/Galileo观测值随机模型优化及定位性能分析. 大地测量与地球动力学. 2022(12): 1222-1226 .
    28. 吴文坛,秘金钟,谷守周. 智能手机广域差分实时定位分析. 测绘科学. 2022(10): 39-44 .

    Other cited types(27)

Catalog

    Article views (503) PDF downloads (69) Cited by(55)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return