Citation: | JIANG Tao, XU Shenghua, LI Xiaoyan, ZHANG Zhiran, WANG Yong, LUO An, HE Xuan. POI Recommendation of Spatiotemporal Sequence Embedding in Gated Dilation Residual Network[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1683-1692. DOI: 10.13203/j.whugis20220658 |
Personalized point of interest (POI) recommendation is a vital service in location-based social network. It can effectively use the sequence and spatiotemporal context information of check-in data to discover movement patterns and preferences of users.
This paper proposes a probabilistic generative model with embedded spatiotemporal conditions to fully exploit the long-term dependency between personalized spatiotemporal preferences and sequential check-in sequences of users, constructs a gated dilation residual network, and implements a POI recommendation method based on gated dilation residual network. The method in this paper learns check-in sequences of users through a gated dilation residual network. It mines and captures the spatiotemporal patterns, sequence preferences and temporal preferences constrained by the spatial distance and time interval of sequential check-in behavior of users.
The proposed method shows significant improvements on the Foursquare and Instagram datasets. Compared to the best-performing algorithm NextItNet, our method demonstrates noticeable enhancements in terms of recall, precision, F1 score, and normalized discounted cumulative gain. On the Foursquare dataset, we achieve improvements ranging from 1.52% to 24.95%. On the Instagram dataset, the improvements range from 7.06% to 42.47%.
The proposed method is more suitable for mining the long-term dependency relationships in sequential check-in behavior of users. It effectively incorporates spatial distance and temporal interval factors, thereby improving the accuracy of POI recommendation.
[1] |
魏海涛, 李柯, 赫晓慧, 等. 融入空间关系的矩阵分解POI推荐模型[J]. 武汉大学学报(信息科学版), 2021, 46(5): 681-690.
Wei Haitao, Li Ke, He Xiaohui, et al. Integrating Spatial Relationship into a Matrix Factorization Model for POI Recommendation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 681-690.
|
[2] |
Liu Y D, Pham T A N, Cong G, et al. An Experimental Evaluation of Point-of-Interest Recommendation in Location-Based Social Networks[J]. Proceedings of the VLDB Endowment, 2017, 10(10): 1010-1021.
|
[3] |
Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian Personalized Ranking from Implicit Feedback[C]//The 25th Conference on Uncertainty in Artificial Intelligence. Montreal, Quebec, Canada, 2009.
|
[4] |
Feng S S, Li X T, Zeng Y F, et al. Personalized Ranking Metric Embedding for Next New POI Recommendation[C]//The 24th International Conference on Artificial Intelligence, Buenos Aires, Argentina, 2015.
|
[5] |
宋亚伟, 司亚利, 刘文远, 等. 融合时间特征和协同过滤的兴趣点推荐算法[J]. 小型微型计算机系统, 2016, 37(6): 1153-1158.
Song Yawei, Si Yali, Liu Wenyuan, et al. Point-of-Interest Recommendation Algorithm Combining Temporal Features and Collaborative Filtering[J]. Journal of Chinese Computer Systems, 2016, 37(6): 1153-1158.
|
[6] |
包玄, 陈红梅, 肖清. 融入时间的兴趣点协同推荐算法[J]. 计算机应用, 2021, 41(8): 2406-2411.
Bao Xuan, Chen Hongmei, Xiao Qing. Time-Incorporated Point-of-Interest Collaborative Recommendation Algorithm[J]. Journal of Computer Applications, 2021, 41(8): 2406-2411.
|
[7] |
任星怡, 宋美娜, 宋俊德. 基于用户签到行为的兴趣点推荐[J]. 计算机学报, 2017, 40(1): 28-51.
Ren Xingyi, Song Meina, Song Junde. Point-of-Interest Recommendation Based on the User Check-in Behavior[J]. Chinese Journal of Computers, 2017, 40(1): 28-51.
|
[8] |
张国明, 王俊淑, 江南, 等. 关注点推荐算法的霍克斯过程法[J]. 测绘学报, 2018, 47(9): 1261-1269.
Zhang Guoming, Wang Junshu, Jiang Nan, et al. A Point-of-Interest Recommendation Method Based on Hawkes Process[J]. Acta Geodaetica et Cartographica Sinica, 2018, 47(9): 1261-1269.
|
[9] |
何颖, 王卓然, 周旭, 等. 融合社交地理信息加权矩阵分解的兴趣点推荐算法[J]. 吉林大学学报(工学版), 2023, 53(9): 2632-2639.
He Ying, Wang Zhuoran, Zhou Xu, et al. Point of Interest Recommendation Algorithm Integrating Social Geographical Information Based on Weighted Matrix Factorization[J]. Journal of Jilin University (Engineering and Technology Edition), 2023, 53(9): 2632-2639.
|
[10] |
Gao R, Li J, Li X F, et al. A Personalized Point-of-Interest Recommendation Model via Fusion of Geo-social Information[J]. Neurocomputing, 2018, 273: 159-170.
|
[11] |
Cheng C, Yang H Q, Lyu M R, et al. Where You Like to Go Next: Successive Point-of-Interest Recommendation[C]//The 23rd International Joint Conference on Artificial Intelligence, Beijing, China, 2013.
|
[12] |
Cai L, Xu J, Liu J, et al. Integrating Spatial and Temporal Contexts into a Factorization Model for POI Recommendation[J]. International Journal of Geographical Information Science, 2018, 32(3): 524-546.
|
[13] |
Fan D Z, Dong Y, Zhang Y S. Satellite Image Matching Method Based on Deep Convolutional Neural Network[J]. Journal of Geodesy and Geoinformation Science, 2019, 2(2): 90-100.
|
[14] |
Gong J Y, Ji S P. Photogrammetry and Deep Learning[J]. Journal of Geodesy and Geoinformation Science, 2018(1): 1-15.
|
[15] |
Krizhevsky A, Sutskever I, Hinton G E. ImageNet Classification with Deep Convolutional Neural Networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
|
[16] |
Zhang S, Yao L N, Sun A X, et al. Deep Learning Based Recommender System: A Survey and New Perspectives[J]. ACM Computing Surveys, 2019, 52(1): 1-38.
|
[17] |
郭旦怀, 张鸣珂, 贾楠, 等. 融合深度学习技术的用户兴趣点推荐研究综述[J]. 武汉大学学报(信息科学版), 2020, 45(12): 1890-1902.
Guo Danhuai, Zhang Mingke, Jia Nan, et al. Survey of Point-of-Interest Recommendation Research Fused with Deep Learning[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1890-1902.
|
[18] |
Wang X Y, Liu Y H, Zhou X, et al. Long- and Short-Term Preference Modeling Based on Multi-level Attention for Next POI Recommendation[J]. ISPRS International Journal of Geo⁃Information, 2022, 11(6): 323.
|
[19] |
Cho K, van Merrienboer B, Gulcehre C, et al. Learning Phrase Representations Using RNN Encoder⁃Decoder for Statistical Machine Translation[C]//Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 2014.
|
[20] |
Liu Q, Wu S, Wang L, et al. Predicting the Next Location: A Recurrent Model with Spatial and Temporal Contexts[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2016, 30(1): 194-200.
|
[21] |
van den Oord A, Dieleman S, Zen H G, et al. WaveNet: A Generative Model for Raw Audio[EB/OL]. [2016-03-04]. http://arxiv.org/abs/1609.03499
|
[22] |
Yuan F J, Karatzoglou A, Arapakis I, et al. A Simple Convolutional Generative Network for Next Item Recommendation[C]//The 12th ACM International Conference on Web Search and Data Mining, Melbourne, Australia, 2019.
|
[23] |
Li J C, Wang Y J, McAuley J. Time Interval Aware Self-Attention for Sequential Recommendation[C]//The 13th International Conference on Web Search and Data Mining, Houston, USA, 2020.
|
[24] |
Shen Z P, Zhang Y M, Lu J W, et al. SeriesNet: A Generative Time Series Forecasting Model[C]//International Joint Conference on Neural Networks (IJCNN), Rio de Janeiro, Brazil, 2018.
|
[25] |
Zhang T T, Zhao P P, Liu Y C, et al. Feature-Level Deeper Self-attention Network for Sequential Recommendation[C]//The 28th International Joint Conference on Artificial Intelligence, Macao, China, 2019.
|
[26] |
Zhao P P, Luo A J, Liu Y C, et al. Where to Go Next: A Spatiotemporal Gated Network for Next POI Recommendation[J]. IEEE Transactions on Knowledge and Data Engineering, 2022, 34(5): 2512-2524.
|
[27] |
Luo Y T, Liu Q, Liu Z C. STAN: Spatiotemporal Attention Network for Next Location Recommendation[C]//The Web Conference, Ljubljana, Slovenia, 2021.
|
[28] |
He K M, Zhang X Y, Ren S Q, et al. Deep Residual Learning for Image Recognition[C]//IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, USA, 2016.
|
[1] | ZHANG Kaishi, JIAO Wenhai, LI Jianwen. Analysis of GNSS Positioning Precision on Android Smart Devices[J]. Geomatics and Information Science of Wuhan University, 2019, 44(10): 1472-1477. DOI: 10.13203/j.whugis20180085 |
[2] | ZHANG Xiaohong, LIU Gen, GUO Fei, LI Xin. Model Comparison and Performance Analysis of Triple-frequency BDS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2124-2130. DOI: 10.13203/j.whugis20180078 |
[3] | KONG Yao, SUN Baoqi, YANG Xuhai, CAO Fen, HE Zhanke, YANG Haiyan. Precision Analysis of BeiDou Broadcast Ephemeris by Using SLR Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(6): 831-837. DOI: 10.13203/j.whugis20140856 |
[4] | ZHANG Xiaohong, DING Lele. Quality Analysis of the Second Generation Compass Observables and Stochastic Model Refining[J]. Geomatics and Information Science of Wuhan University, 2013, 38(7): 832-836. |
[5] | ZHANG Xiaohong, GUO Fei, LI Pan, ZUO Xiang. Real-time Quality Control Procedure for GNSS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 940-944. |
[6] | CAI Changsheng, ZHU Jianjun, DAI Wujiao, KUANG Cuilin. Modeling and Result Analysis of Combined GPS/GLONASS Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1474-1477. |
[7] | HE Ning, WANG Lei. Recursion Multi-service Cross-layer Flow Control Algorithm of Broadband GEO Satellite Networks[J]. Geomatics and Information Science of Wuhan University, 2010, 35(5): 532-536. |
[8] | CAI Hua, ZHAO Qile, LOU Yidong. Implementation and Precision Analysis of GPS Precise Clock Estimation System[J]. Geomatics and Information Science of Wuhan University, 2009, 34(11): 1293-1296. |
[9] | DAI Wujiao, DING Xiaoli, ZHU Jianjun. Comparing GPS Stochastic Models Based on Observation Quality Indices[J]. Geomatics and Information Science of Wuhan University, 2008, 33(7): 718-722. |
[10] | ZHANG Yongjun, ZHANG Yong. Analysis of Precision of Relative Orientation and Forward Intersection with High-overlap Images[J]. Geomatics and Information Science of Wuhan University, 2005, 30(2): 126-130. |