MA Chao, HAO Weifeng, CHENG Qing, LUO Jie, LI Fei. Quality Evaluation of GLASS Albedo Products and Albedo Variation Trends Analysis in Greenland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1917-1926. DOI: 10.13203/j.whugis20200297
Citation: MA Chao, HAO Weifeng, CHENG Qing, LUO Jie, LI Fei. Quality Evaluation of GLASS Albedo Products and Albedo Variation Trends Analysis in Greenland[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1917-1926. DOI: 10.13203/j.whugis20200297

Quality Evaluation of GLASS Albedo Products and Albedo Variation Trends Analysis in Greenland

Funds: 

The National Key Research and Development Program of China 2017YFA0603104

the National Natural Science Foundation of China 41601357

the National Natural Science Foundation of China 41531069

More Information
  • Author Bio:

    MA Chao, postgraduate, specializes in quantitative inversion of polar sea ice albedo. E-mail: macwhu@whu.edu.cn

  • Corresponding author:

    HAO Weifeng, associate professor. E-mail: haowf@whu.edu.cn

  • Received Date: September 24, 2020
  • Available Online: November 15, 2022
  • Published Date: November 04, 2022
  •   Objectives  The albedo of Greenland, the second largest ice sheet in the world, is the key to study the change of energy budget in the northern Hemisphere.Global land surface satellite products system (GLASS) is the global albedo product with the longest time series (1981—2017) in the world.
      Methods  The accuracy of surface albedo of GLASS in Greenland is evaluated using Greenland climate network (GC-Net) and programme for monitoring of the Greenland ice sheet (PROMICE) ground observation data. Based on the surface albedo product of GLASS from 2000 to 2017, the annual variation trend and spatial distribution characteristics of albedo in Greenland in July are analyzed.
      Results  The results show that the root mean square error (RMSE) between GLASS and GC-Net albedo is 0.077 8 (R2=0.490 7), and that between GLASS and PROMICE albedo is 0.078 6 (R2=0.899 9). The results of GLASS albedo change in Greenland in July from 2000 to 2017 show that the albedo of Greenland was decreasing during this period, with an average rate of about 0.000 6/a, and the decreased area accounts for about 64% of the total area of Greenland. Among them, the area between 750 m and 1 500 m above sea level in western Greenland is the most sensitive to climate change and has the highest rate of albedo reduction, reaching 0.026/a.
      Conclusions  The albedo value of GLASS products is underestimated to some extent but it meets the needs of ice and snow albedo research in Greenland. Also, the albedo of Greenland shows a slow interannual decline in July, especially in the western region.
  • [1]
    鄂栋臣, 姜卫平. 北极考察与GPS定位研究初探[J]. 极地研究, 2000, 12(1): 32-39 https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200001004.htm

    E Dongchen, Jiang Weiping. Arctic Expedition and a Preliminary Research of GPS Positioning[J]. Chinese Journal of Polar Research, 2000, 12(1): 32-39 https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200001004.htm
    [2]
    Rignot E, Box J, Burgess E, et al. Mass Balance of the Greenland Ice Sheet from 1958 to 2007[J]. Geophysical Research Letters, 2008, 35(20): L20502 doi: 10.1029/2008GL035417
    [3]
    杨元德, 鄂栋臣, 晁定波. 利用GRACE数据反演格陵兰冰盖冰雪质量变化[J]. 武汉大学学报∙信息科学版, 2009, 34(8): 961-964 http://ch.whu.edu.cn/article/id/1329

    Yang Yuande, E Dongchen, Chao Dingbo. The Inversion of Ice Mass Change in Greenland Ice Sheet Using GRACE Data[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 961-964 http://ch.whu.edu.cn/article/id/1329
    [4]
    Tian Y, Qi H, Li R. Greenland Albedo Reanalysis Product and Preliminary Accuracy Assessment[C] //IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019
    [5]
    Dickinson R. Land Surface Processes and Climate-Surface Albedos and Energy Balance[J]. Advances in Geophysics, 1983, 25(12): 305-353
    [6]
    Hogg J. Quantitative Remote Sensing of Land Surfaces[J]. Photogrammetric Record, 2004, 19(108): 413-415
    [7]
    Liang S, Zhao X, Liu S, et al. A Long-Term Global Land Surface Satellite (GLASS) Dataset for Environmental Studies[J]. International Journal of Digital Earth, 2013, 6(sup1): 5-33
    [8]
    Zhang X, Liang S, Wang K, et al. Analysis of Global Land Surface Shortwave Broadband Albedo From Multiple Data Sources[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2010, 3(3): 296-305 doi: 10.1109/JSTARS.2010.2049342
    [9]
    Xiong X, Stamnes K, Lubin D. Surface Albedo over the Arctic Ocean Derived from AVHRR and Its Validation with SHEBA Data[J]. Journal of Applied Meteorology, 2002, 41(4): 413-425 doi: 10.1175/1520-0450(2002)041<0413:SAOTAO>2.0.CO;2
    [10]
    罗杰, 李斐, 程青, 等. 海冰反照率参数化和遥感反演方法及其产品的研究评述[J]. 地球物理学进展, 2020, 35(2): 445-460 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002008.htm

    Luo Jie, Li Fei, Cheng Qing, et al. Review on Sea Ice Albedo Parameterization and Remote Sensing Inversion Methods and Products[J]. Progress in Geophysics, 2020, 35(2): 445-460 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ202002008.htm
    [11]
    梁顺林, 张晓通, 肖志强, 等. 全球陆表特征参量(GLASS)产品算法验证与分祈[M]. 北京: 高等教育出版社, 2014: 33-72

    Liang Shunlin, Zhang Xiaotong, Xiao Zhiqiang, et al. Validation and Analysis of Global Land Surface Characteristic Parameters (GLASS) Product Algorithm[M]. Beijing: Higher Education Press, 2014: 33-72
    [12]
    Qu Y, Liu Q, Liang S, et al. Direct-Estimation Algorithm for Mapping Daily Land-Surface Broadband Albedo from MODIS Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(2): 907-919
    [13]
    Box J, Steffen K. Greenland Climate Network (GC-Net) Data Reference[R]. Boulder, USA: University of Colorado, 1999
    [14]
    Ahlstrom A, Andersen M, Andersen S. Programme for Monitoring of the Greenland Ice Sheet (PROMICE) [C]//AGU Fall Meeting, San Francisco, USA, 2011
    [15]
    Qu Y, Liang S, Liu Q, et al. Estimating Arctic Sea-Ice Shortwave Albedo from MODIS Data[J]. Remote Sensing of Environment, 2016, 186: 32-46
    [16]
    韩谷怀, 秦其明, 任华忠, 等. 利用AB算法进行高分四号卫星数据反照率反演[J]. 武汉大学学报∙信息科学版, 2020, 45(4): 542-549 doi: 10.13203/j.whugis20180291

    Han Guhuai, Qin Qiming, Ren Huazhong, et al. Retrieval of GF-4 Satellite Image Data Surface Albedo Based on Angular Bin Algorithm[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 542-549 doi: 10.13203/j.whugis20180291
    [17]
    Stroeve J, Box J, Haran T. Evaluation of the MODIS(MOD10A1) Daily Snow Albedo Product over the Greenland Ice Sheet[J]. Remote Sensing of Environment, 2006, 105(2): 155–171
    [18]
    Lewis P, Barnsley M. Influence of the Sky Radiance Distribution on Various Formulations of the Earth Surface Albedo[C]//The Colloque International Mesures Physiques et Signatures en Teledetection, Val d?Isere, Franc, 1994
    [19]
    Stokes G, Schwartz S. The Atmospheric Radiation Measurement (ARM) Program: Programmatic Background and Design of the Cloud and Radiation Test Bed[J]. Bulletin of the American Meteorological Society, 1994, 75(7): 1201-1221
    [20]
    Schaaf C, Wang Z, Strahler A. Commentary on Wang and Zender-MODIS Snow Albedo Bias at High Solar Zenith Angles Relative to Theory and to In-situ Observations in Greenland[J]. Remote Sensing of Environment, 2011, 115(5): 1296-1300
    [21]
    魏凤英. 现代气候统计诊断与预测技术[M]. 北京: 气象出版社, 1999

    Wei Fengying. Modern Statistics and Prediction Technique on Climate[M]. Beijing: China Meteorological Press, 1999
    [22]
    Stroeve J, Box J, Wang Z, et al. Re-evaluation of MODIS MCD43 Greenland Albedo Accuracy and Trends[J]. Remote Sensing of Environment, 2013, 138: 199-214
    [23]
    潘海珠, 王建, 李弘毅. 祁连山区MODIS积雪反照率产品的精度验证及云下积雪反照率估算研究[J]. 冰川冻土, 2015, 37(1): 49-57 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501005.htm

    Pan Haizhu, Wang Jian, Li Hongyi. Accuracy Validation of the MODIS Snow Albedo Products and Estimate of the Snow Albedo Under Cloud over the Qilian Mountains[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 49-57 https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201501005.htm
    [24]
    Peng F, Zhou H, Chen G. New Insights in Regional Climate Change: Coupled Land Albedo Change Estimation in Greenland from 1981 to 2017[J]. Remote Sensing, 2020, 12(5): 756
    [25]
    崔红艳. 北极海冰变化对北半球气候影响研究[D]. 青岛: 中国海洋大学, 2014

    Cui Hongyan. Research the Impact of Declining Arctic Sea Ice on Climate Change in Northern Hemisphere[D]. Qingdao: Ocean University of China, 2014
    [26]
    He T, Liang S, Yu Y, et al. Greenland Surface Albedo Changes in July 1981—2012 from Satellite Observations[J]. Environmental Research Letters, 2013, 8(4): 044043
  • Related Articles

    [1]IA Lei, LAI Zulong, MEI Changsong, JIAO Chenchen, JIANG Ke, PAN Xiong. An Improved Algorithm for Real-Time Cycle Slip Detection and Repair Based on TurboEdit Epoch Difference Model[J]. Geomatics and Information Science of Wuhan University, 2021, 46(6): 920-927. DOI: 10.13203/j.whugis20190287
    [2]ZHANG Xiaohong, ZENG Qi, HE Jun, KANG Chao. Improving TurboEdit Real-time Cycle Slip Detection by the Construction of Threshold Model[J]. Geomatics and Information Science of Wuhan University, 2017, 42(3): 285-292. DOI: 10.13203/j.whugis20150045
    [3]JIANG Xinhua, WANG Xianhua, YE Hanhan, BU Tingting, SANG Hao. Threshold Selecting Method of Cloud Detection Applied to O2-A Band[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2): 202-207. DOI: 10.13203/j.whugis20140772
    [4]WANG Cheng, WANG Jiexian, HE Lina. Real Time Cycle Slip Detection Based on Jarque-Bera Test Using Bi-differences of Code and Phase[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 693-696.
    [5]WU Yue, LI Haijun, QIU Lei, WANG Haijun. Virtual Detection Method of Real-Time Fixing Cycle Slip of GPS Double-Frequency Original Carrieral Phase Observations[J]. Geomatics and Information Science of Wuhan University, 2012, 37(3): 257-260.
    [6]LIU Liangming, WEI Ran, ZHOU Zheng. Forest and Grassland Fire Detection Algorithm Based on Dynamic Threshold[J]. Geomatics and Information Science of Wuhan University, 2011, 36(12): 1434-1437.
    [7]YI Zhonghai, ZHU Jianjun, CHEN Yongqi, DAI Wujiao. Cycle-Slip Detection and Correction Algorithm for Real-Time PPP[J]. Geomatics and Information Science of Wuhan University, 2011, 36(11): 1314-1319.
    [8]CAI Hua, ZHAO Qile, SUN Hanrong, HU Zhigang. GNSS Real-time Data Quality Control[J]. Geomatics and Information Science of Wuhan University, 2011, 36(7): 820-824.
    [9]FANG Rongxin, SHI Chuang, WEI Na, ZHAO Qile. Real-time Cycle-slip Detection for Quality Control of GPS Measurements[J]. Geomatics and Information Science of Wuhan University, 2009, 34(9): 1094-1097.
    [10]SHENG Shaohong, WAN Youchuan, GONG Hao, LAI Zulong. An Adaptive Threshold Segmentation Method Based on Spatial Statistic Theory to High-resolution Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 902-905.
  • Cited by

    Periodical cited type(4)

    1. 解雪峰,胡洪,高井祥. 北斗三号码观测值评估及定位精度分析. 合肥工业大学学报(自然科学版). 2023(01): 118-125 .
    2. 黎湛明. 北斗三号非组合三频单点定位精度分析. 测绘与空间地理信息. 2022(11): 75-77 .
    3. 魏建军,刘乃安,黑永强,唐军,幸新鹏,韦娟. 无线通信中的多径效应实验. 实验技术与管理. 2020(10): 77-79+83 .
    4. 张皓,郑南山,丰秋林. BP神经网络辅助的GNSS反射信号NDVI反演. 科学技术与工程. 2019(36): 81-86 .

    Other cited types(3)

Catalog

    Article views (592) PDF downloads (83) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return