WANG Dongwei, SUN Yueqiang, WANG Xianyi, BAI Weihua, XIA Junming, DU Qifei, CAI Yuerong, MENG Xiangguang, WU Chunjun, LIU Cheng, QIAO Hao, LI Fu. Water Surface Altimetry Using BD-3 B2a Reflected Signal[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1878-1886. DOI: 10.13203/j.whugis20200278
Citation: WANG Dongwei, SUN Yueqiang, WANG Xianyi, BAI Weihua, XIA Junming, DU Qifei, CAI Yuerong, MENG Xiangguang, WU Chunjun, LIU Cheng, QIAO Hao, LI Fu. Water Surface Altimetry Using BD-3 B2a Reflected Signal[J]. Geomatics and Information Science of Wuhan University, 2022, 47(11): 1878-1886. DOI: 10.13203/j.whugis20200278

Water Surface Altimetry Using BD-3 B2a Reflected Signal

Funds: 

The National Natural Science Foundation of China 41775034

The National Natural Science Foundation of China 41405040

The National Natural Science Foundation of China 41505030

The National Natural Science Foundation of China 41606206

The National Natural Science Foundation of China 41405039

the Scientific Research Project of the Chinese Academy of Sciences YZ201129

Youth Innovation Promotion Association, CAS 2018180

More Information
  • Author Bio:

    WANG Dongwei, PhD, senior engineer, specializes in GNSS remote sensing application research and receiver design. E-mail:wangdongwei@nssc.ac.cn

  • Corresponding author:

    WANG Xianyi, PhD, professor. E-mail: wxy@nssc.ac.cn

  • Received Date: July 25, 2020
  • Available Online: November 15, 2022
  • Published Date: November 04, 2022
  •   Objectives  The B2a is a new signal of BeiDou-3(BD-3) with high-bandwidth and high pseudorange measurement precision, therefore, it is suitable for GNSS-R water surface altimetry. There were few studying based on the BD-3 reflected signal, due to the BD-3 system just began to provide worldwide services in the past two years.
      Methods  The National Space Science Center (NSSC) has developed a GNSS-R receiver with independent intellectual property supporting the BD-3 B2a capture and tracking functions, which can obtain and track both direct and reflected B2a signals. B2a signals are difficult to capture due to its long PRN code. One B2a assistant approach is proposed and implemented that the shorter B1I signals are first obtained and tracked, then the B2a signals can be correctly captured using B1I auxiliary information with shorter acquisition time. One cross calibration system is included by the receiver, which can effectively eliminate the system biases caused by the delays of different cables and receiver channels.
      Results  During the shore-based experiment carried out at Huairou in Beijing in 2019, the correlation waveforms of the BD-3 B2a, BD-2 B1I and GPS L1 C/A reflected signals were accumulated. The water surface height was successfully retrieved and the systematic biases was eliminated effectively. The water surface height results show that the inversion precision based on BD-3 B2a reaches 5.9 cm with the non-coherent integration time of 30 s.
      Conclusions  The height precision has been improved by 13 cm than BD-2 B1I signal and 20 cm than GPS L1 C/A signal. This verification experiment expands the application research of BD-3 system in GNSS-R water surface altimetry and lays the foundation for the development of subsequent tasks.
  • [1]
    Asgarimehr M, Wickert J, Reich S, et al. TDS-1 GNSS Reflectometry: Development and Validation of Forward Scattering Winds [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2018, 11(11): 4534-4541 doi: 10.1109/JSTARS.2018.2873241
    [2]
    路勇, 杨东凯, 熊华钢. 基于GNSS-R的海面风场监测系统研究[J]. 武汉大学学报·信息科学版, 2009, 34(4): 470-473 http://ch.whu.edu.cn/article/id/1232

    Lu Yong, Yang Dongkai, Xiong Huagang, et al. Study of Ocean Wind-field Monintoring System Based on GNSS-R[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 470-473 http://ch.whu.edu.cn/article/id/1232
    [3]
    Sabia R, Caparrini M, Camps A, et al. Potential Synergetic Use of GNSS-R Signals to Improve the Sea-State Correction in the Sea Surface Salinity Estimation: Application to the SMOS Mission[J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(7): 2088-2097 doi: 10.1109/TGRS.2007.898257
    [4]
    Yan Q Y, Huang W M. Sea Ice Thickness Measurement Using Spaceborne GNSS-R: First Results with TechDemoSat-1 Data [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2020, 13: 577-587 doi: 10.1109/JSTARS.2020.2966880
    [5]
    Chew C, Shah R, Zuffada C, et al. Demonstrating Soil Moisture Remote Sensing with Observations from the UK TechDemoSat‐1 Satellite Mission[J]. Geophysical Research Letters, 2016, 43: 3317–3324 doi: 10.1002/2016GL068189
    [6]
    梁勇, 杨磊, 吴秋兰. 地表粗糙度影响下的GNSS-R土壤湿度反演仿真分析[J]. 武汉大学学报·信息科学版, 2018, 43(10): 1546-1552 doi: 10.13203/j.whugis20160557

    Liang Yong, Yang Lei, Wu Qiulan, et al. Simulation of Soil Roughness Impact in GNSS-R Soil Moisture Retrieval[J]. Geomatics and Information Science of Wuhan University, 2018, 43(10): 1546-1552 doi: 10.13203/j.whugis20160557
    [7]
    Martín-Neira M. A Passive Reflectometry and Interferometry System (PARIS): Application to Ocean Altimetry [J]. ESA Journal, 1993, 17: 331-355
    [8]
    Martín-Neira M, Addio S D, Buck C, et al. The PARIS Ocean Altimeter In-Orbit Demonstrator [J]. IEEE Trans Geoscience and Remote Sensing Letters, 2011, 49(6): 2209-2237 doi: 10.1109/TGRS.2010.2092431
    [9]
    MacArthur J L, Kilgus C C, Twigg C A, et al. Evolution of the Satellite Radar Altimeter, Johns Hopkins APL Tech [J]. Dig, 1989, 10(4): 405-413
    [10]
    Unwin M, Jales P, Tye J, et al. Spaceborne GNSS-Reflectometry on TechDemoSat-1: Early Mission Operations and Exploitation [J]. IEEE Applied Earth Observations and Remote Sensing, 2016, 9(10): 4525-4539 doi: 10.1109/JSTARS.2016.2603846
    [11]
    Ruf C, Gleason S, Jelenak Z, et al. The NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) Mission [C]// IEEE Aerospace Conference, Big Sky, MT, USA, 2013
    [12]
    Sun Y Q, Wang X Y, Du Q F, et al. The Status and Progress of Fengyun-3E GNOS II Mission for GNSS Remote Sensing [C]//IEEE International Geoscience and Remote Sensing Symposium, Yokohama, Japan, 2019
    [13]
    Wickert J, Cardellach E, Martín-Neira M, et al. GEROS-ISS: GNSS Reflectometry, Radio Occultation, and Scatterometry Onboard the International Space Station [J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2016, 9(10): 4552-4581 doi: 10.1109/JSTARS.2016.2614428
    [14]
    Lowe S T, Zuffada C, LaBrecque J L, et al. An Ocean-Altimetry Measurement Using Reflected GPS Signals Observed from a Low-Altitude Aircraft [C]//Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 2000
    [15]
    Nogues-Correig O, Cardellach E, Sanz J, et al. A GPS-Reflections Receiver That Computes Doppler/Delay Maps in Real Time [J]. IEEE Transactions on Geoscience and Remote Sensing, 2007, 45(1): 156-174 doi: 10.1109/TGRS.2006.882257
    [16]
    Lowe S T, Zuffada C, Chao Y, et al. 5-cm-Precision Aircraft Ocean Altimetry Using GPS Reflections [J]. Geophysical Research Letters, 2002, 29(10): 131–134 doi: 10.1029/2002GL014759
    [17]
    Clarizia M P, Ruf C, Cipollini P, et al. First Spaceborne Observation of Sea Surface Height Using GPS-Reflectometry[J]. Geophysical Research Letters, 2016, 43(2): 767–774 doi: 10.1002/2015GL066624
    [18]
    邵连军, 张训械, 王鑫, 等. 利用GNSS-R信号反演海浪波高[J]. 武汉大学学报·信息科学版, 2008, 33(5): 475-478 http://ch.whu.edu.cn/article/id/1594

    Shao Lianjun, Zhang Xunxie, Wang Xin, et al. Sea Surface Wave Height Retrieve Using GNSS-R Signals[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 475-478 http://ch.whu.edu.cn/article/id/1594
    [19]
    Pascual D, Park H, Camps A, et al. Comparison of GPS L1 and Galileo E1 Signals for GNSS-R Ocean Altimetry[C]//IEEE International Geoscience and Remote Sensing Symposium, Melbourne, VIC, Australia, 2013
    [20]
    Powell S, Akos D, Zavorotny V. GPS SBAS L1/L5 Bistatic Radar Altimeter[C]//IEEE Geoscience and Remote Sensing Symposium, Quebec City, Canada, 2014
    [21]
    胡长江, 李英冰. GNSS-R星载测高的动态误差和信号平行误差研究[J]. 武汉大学学报·信息科学版, 2015, 40(12): 1695-1700 doi: 10.13203/j.whugis20130819

    Hu Changjiang, Li Yingbing. Dynamic Error and Parallel Signal Error in GNSS-R Spaceborn Altimetry[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1695-1700 doi: 10.13203/j.whugis20130819
    [22]
    Wu J M, Chen Y L, Gao F, et al. Sea Surface Height Estimation by BDS GEO Satellite Reflectometry [C]//Photonics and Electromagnetics Research Symposium, Xiamen, China, 2019
    [23]
    Jin S, Cardellach E, Xie F. Ocean Remote Sensing Using GNSS-R[M]// Abrams M, Curran P, Dekker A, et al. GNSS Remote Sensing, Remote Sensing and Digital Image Processing. The Netherlands: Springer, 2013
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views (536) PDF downloads (67) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return