HUANG Lina, YAO Xiangyu, TIAN Heng, YING Shen. Correlation Analysis Between Spatial Cognitive Abilities and Wayfinding Performance in 3D Environments[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 673-682. DOI: 10.13203/j.whugis20200247
Citation: HUANG Lina, YAO Xiangyu, TIAN Heng, YING Shen. Correlation Analysis Between Spatial Cognitive Abilities and Wayfinding Performance in 3D Environments[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 673-682. DOI: 10.13203/j.whugis20200247

Correlation Analysis Between Spatial Cognitive Abilities and Wayfinding Performance in 3D Environments

Funds: 

The Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation, Ministry of Natural Resourc‍es (KF‐2018‐03‐010) 

the National Key Research and Development Program of China 2017YFB0503502

the Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing Special Research Fund‍ing 

More Information
  • Author Bio:

    HUANG Lina, PhD, associate professor. Her research interests include geographic spatial cognition and intelligent service, geo‍‐‍information visualization, smart city. E‐mail: linahuang@whu.edu.cn

  • Corresponding author:

    YING Shen, PhD, professor. E‐mail: shy@whu.edu.cn

  • Received Date: August 19, 2020
  • Published Date: May 04, 2022
  •   Object  The influence of human factors on wayfinding performance is essential to improve the us‍er experience of intelligent navigation service.
      Method  Based on four cognitive abilities, i.e. mental rotation, abstract reasoning, spatial short‐term memory and spatial perception, this paper conducts several spatial cognitive experiments to analysis the correlation between spatial cognitive abilities and wayfinding performance.
      Results  The results indicate that: (1) These four spatial cognitive abilities are weakly correlated with each other, and can be separated partly with reference to the scale of recognition space. Specifically, cognitive group with mental rotation ability and abstract reasoning ability, and cognitive group with short‐term memory ability and spatial perception ability, have stronger correlation respectively concerning the same space scale. While those groups where cognitive abilities cross different scale space have week correlation. (2) Mental rotation ability and abstract reasoning ability have higher significance and goodness of regression fitting on wayfinding performance. Considering the combined effect of multiple cognitive factors, in virtual scene, the mental rotation ability shows the highest influence while the spatial perception ability has the lowest influence; in real scene, the spatial perception ability shows the highest influence and the short‐term memory ability has the lowest influence. (3) The wayfinding performance has significant scene effect with respect to the real and virtual scenes, i.e. the determinant coefficients of cognitive factors for wayfinding performance fitting varies with the scene type.
      Conclusions  These results provide an empirical refer‍ence for the effectiveness of pedestrian navigation research based on virtual scene. It can also serve as a basis for the design of navigation service considering human factors.
  • [1]
    Huang H S, Gartner G, Krisp J M, et al. Location Based Services: Ongoing Evolution and Research Agenda[J]. Journal of Location Based Services, 2018, 12(2): 63-93 doi: 10.1080/17489725.2018.1508763
    [2]
    方志祥, 徐虹, 萧世伦, 等. 绝对空间定位到相对空间感知的行人导航研究趋势[J]. 武汉大学学报·信息科学版, 2018, 43(12): 2173-2182 doi: 10.13203/j.whugis20180170

    Fang Zhixiang, Xu Hong, Xiao Shilun, et al. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182 doi: 10.13203/j.whugis20180170
    [3]
    刘经南, 吴杭彬, 郭迟, 等. 高精度道路导航地图的进展与思考[J]. 中国工程科学, 2018, 20(2): 99 -105 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201802016.htm

    Liu Jingnan, Wu Hangbin, Guo Chi, et al. Progress and Consideration of High Precision Road Navigation Map[J]. Strategic Study of CAE, Chinese Journal of Engineering Science, 2018, 20(2): 99 105 https://www.cnki.com.cn/Article/CJFDTOTAL-GCKX201802016.htm
    [4]
    Bilefksy D. GPS Mix Up Brings Wrong Turn and Celebrity to American Lost in Iceland[N/OL]. The New York Times, (2016-02-05). https://www.smh.com.au/world/gps-mixup-brings-wrong-turnand-celebrity-to-american-lost-in-iceland-20160205gmmlh4.html
    [5]
    Wolbers T, Hegarty M. What Determines Our Navigational Abilities?[J]. Trends in Cognitive Sciences, 2010, 14(3): 138-146 doi: 10.1016/j.tics.2010.01.001
    [6]
    Lawton C A, Charleston S I, Zieles A S. Individualand Gender-Related Differences in Indoor Wayfinding[J]. Environment and Behavior, 1996, 28 (2): 204-219 doi: 10.1177/0013916596282003
    [7]
    Coluccia E, Louse G. Gender Differences in Spatial Orientation: A Review[J]. Journal of Environmental Psychology, 2004, 24(3): 329-340 doi: 10.1016/j.jenvp.2004.08.006
    [8]
    Lawton C A. Gender, Spatial Abilities, and Wayfinding[M]// Handbook of Gender Research in Psychology. New York: Springer, 2010
    [9]
    Lin C T, Huang T Y, Lin W J, et al. Gender Differences in Wayfinding in Virtual Environments with Global or Local Landmarks[J]. Journal of Environmental Psychology, 2012, 32(2): 89-96 doi: 10.1016/j.jenvp.2011.12.004
    [10]
    左婷婷, 胡清芬. 空间认知风格及其与空间能力的关系[J]. 心理科学进展, 2015, 23(6): 959-966 https://www.cnki.com.cn/Article/CJFDTOTAL-XLXD201506005.htm

    Zuo Tingting, Hu Qingfen. Spatial Cognitive Style and Its Relationship with Spatial Abilities[J]. Advances in Psychological Science, 2015, 23(6): 959966 https://www.cnki.com.cn/Article/CJFDTOTAL-XLXD201506005.htm
    [11]
    Surtees A D R, Noordzij M L, Apperly I A. Sometimes Losing Your Self in Space: Children ? s and Adults ? Spontaneous Use of Multiple Spatial Reference Frames[J]. Developmental Psychology, 2012, 48(1): 185-191 doi: 10.1037/a0025863
    [12]
    高雪原, 董卫华, 童依依, 等. 场认知方式、性别和惯用空间语对地理空间定向能力影响的实验研究[J]. 地球信息科学学报, 2016, 18(11): 1513-1521

    Gao Xueyuan, Dong Weihua, Tong Yiyi, et al. Study on the Influence of Field Cognitive Style, Gender and Spatial Terminology on Geographical Spatial Orientation Ability: Based on Experiments in Virtual Space[J]. Journal of Geo Information Science, 2016, 18(11): 1513-1521
    [13]
    李钰. 关于参考框架和心理旋转的空间认知研究[D]. 南宁: 广西师范学院, 2013

    Li Yu. Frame of Reference and Mental Rotation Spatial Cognition Research[D]. Nanning: Guangxi Teachers Education University, 2013
    [14]
    应申, 庄园, 黄丽娜, 等. 性别和认知差异对三维空间寻路结果的影响[J]. 武汉大学学报·信息科学版, 2020, 45(3): 317-324 doi: 10.13203/j.whugis20190184

    Ying Shen, Zhuang Yuan, Huang Lina, et al. Impact of Gender, Cognitive Differences in 3D Scenes on Wayfinding[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 317 324 doi: 10.13203/j.whugis20190184
    [15]
    Nori R, Giusberti F. Predicting Cognitive Styles from Spatial Abilities[J]. The American Journal of Psychology, 2006, 119(1): 67-86 doi: 10.2307/20445319
    [16]
    梁宁建. 当代认知心理学[M]. 上海: 上海教育出版社, 2003

    Liang Ningjian. Contemporary Cognitive Psychology [M]. Shanghai: Shanghai Education Publishing House, 2003
    [17]
    方浩, 宋章通, 杨流, 等. VR移动城市导航地图设计中的空间认知要素[J]. 武汉大学学报·信息科学版, 2019, 44(8): 1124-1130 doi: 10.13203/j.whugis20180066

    Fang Hao, Song Zhangtong, Yang Liu, et al. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124 1130 doi: 10.13203/j.whugis20180066
    [18]
    Thorndyke P W, Hayes-Roth B. Differences in Spatial Knowledge Acquired from Maps and Navigation [J]. Cognitive Psychology, 1982, 14(4): 560-589 doi: 10.1016/0010-0285(82)90019-6
    [19]
    Sancaktar İ, Demirkan H. Spatial Updating of Objects After Rotational and Translational Body Movements in Virtual Environments[J]. Computers in Human Behavior, 2008, 24(6): 2682-2696 doi: 10.1016/j.chb.2008.03.013
    [20]
    Lei P L, Kao G Y M, Lin S S J, et al. Impacts of Geographical Knowledge, Spatial Ability and Environmental Cognition on Image Searches Supported by GIS Software[J]. Computers in Human Behavior, 2009, 25(6): 1270-1279 doi: 10.1016/j.chb.2009.05.003
    [21]
    Ying S, Zhuang Y, Huang L N, et al. Analysis of the Correlation Between Spatial Cognitive Abilities and Wayfinding Decisions in 3D Digital Environments[J]. Behaviour & Information Technology, 2021, 40(8): 809-820
    [22]
    Witmer B G, Bailey J H, Knerr B W, et al. Virtual Spaces and Real World Places: Transfer of Route Knowledge[J]. International Journal of Human Computer Studies, 1996, 45(4): 413-428 doi: 10.1006/ijhc.1996.0060
    [23]
    Hutcheson A, Allen G L. Path Memory in Real World and Virtual Settings[C]//COSIT: International Conference on Spatial Information Theory, New York, USA, 2005
    [24]
    Richardson A E, Montello D R, Hegarty M. Spatial Knowledge Acquisition from Maps and from Navigation in Real and Virtual Environments[J]. Memory & Cognition, 1999, 27(4): 741-750
    [25]
    Oman C M, Shebilske W L, Richards J T, et al. Three Dimensional Spatial Memory and Learning in Real and Virtual Environments[J]. Spatial Cognition and Computation, 2002, 2(4): 355-372
    [26]
    Liu S Q, Zheng X S, Liu X Y, et al. Dual Effects of Spatial Updating in Both Real and Virtual Environments[J]. Chinese Science Bulletin, 2013, 58 (8): 898-906 doi: 10.1007/s11434-013-5676-7
    [27]
    Reber A S. The Penguin Dictionary of Psychology [M]. Harmondsworth: Penguin, 1995
    [28]
    韩金荣. 基于中学生地理空间素养培育的GE运用策略研究[D]. 长春: 东北师范大学, 2009

    Han Jinrong. The Research on Usage Strategies of Google Earth as a Geospatial Literacy Eduction Tool in Middle School[D]. Changchun: Northeast Normal University, 2009
    [29]
    Hart R A, Moore G T. The Development of Spatial Cognition: A Review[M]//Downs R M, Stea D. Image & Environment: Cognitive Mapping and Spatial Behavior. London: Amold, 1973
    [30]
    Šašinka Č, Stachoň Z, Sedlák M, et al. Collaborative Immersive Virtual Environments for Education in Geography[J]. ISPRS International Journal of Geo-Information, 2019, 8(1), DOI: org/ 10.3390/ijgi8010003
    [31]
    Liao H, Dong W H, Huang H S, et al. Inferring User Tasks in Pedestrian Navigation from Eye Movement Data in Real World Environments[J]. International Journal of Geographical Information Science, 2019, 33(4): 739-763 doi: 10.1080/13658816.2018.1482554
    [32]
    Liao H, Dong W H. An Exploratory Study Investigating Gender Effects on Using 3D Maps for Spatial Orientation in Wayfinding[J]. ISPRS International Journal of Geo-Information, 2017, 6(3), DOI: org/ 10.3390/ijgi6030060
    [33]
    王鹏, 游旭群, 刘永芳. 心理旋转研究的新进展[J]. 心理科学, 2005, 28(5): 1164-1166 doi: 10.3969/j.issn.1671-6981.2005.05.035

    Wang Peng, You Xuqun, Liu Yongfang. The Development of Mental Rotation Research[J]. Psychological Science, 2005, 28(5): 1164-1166 doi: 10.3969/j.issn.1671-6981.2005.05.035
    [34]
    Kyllonen P C, Christal R E. Reasoning Ability is (Little More Than)Working-Memory Capacity?! [J]. Intelligence, 1990, 14(4): 389-433 doi: 10.1016/S0160-2896(05)80012-1
    [35]
    Arthur W J R, Day D V. Development of a Short Form for the Raven Advanced Progressive Matrices Test[J]. Educational and Psychological Measurement, 1994, 54(2): 394-403 doi: 10.1177/0013164494054002013
    [36]
    Hegarty M, Montello D R, Richardson A E, et al. Spatial Abilities at Different Scales: Individual Differences in Aptitude Test Performance and Spatial Layout Learning[J]. Intelligence, 2006, 34(2): 151-176 doi: 10.1016/j.intell.2005.09.005
    [37]
    Castro-Alonso J C, Atit K. Different Abilities Controlled by Visuospatial Processing[M]// Visuospatial Processing for Education in Health and Natural Sciences. Cham: Springer, 2019
    [38]
    Cook M P. Visual Representations in Science Education: The Influence of Prior Knowledge and Cognitive Load Theory on Instructional Design Principles[J]. Science Education, 2006, 90(6): 1073 1091 doi: 10.1002/sce.20164
    [39]
    Kato Y, Takeuchi Y. Individual Differences in Wayfinding Strategies[J]. Journal of Environmental Psychology, 2003, 23(2): 171-188 doi: 10.1016/S0272-4944(03)00011-2
  • Related Articles

    [1]LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
    [2]ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465
    [3]FANG Hao, SONG Zhangtong, YANG Liu, MA Yitao, QIN Qianqing. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124-1130. DOI: 10.13203/j.whugis20180066
    [4]FANG Zhixiang, XU Hong, SHAW Shih-Lung, LI Qingquan, YUAN Shujun, LI Ling. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182. DOI: 10.13203/j.whugis20180170
    [5]LIU Tao, ZHANG Xing, LI Qingquan, FANG Zhixiang. An Indoor Pedestrian Route Planning Algorithm Based on Landmark Visibility[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 43-48. DOI: 10.13203/j.whugis20150387
    [6]ZHANG Qinghua, SUI Lifen, JIA Xiaolin, ZHU Yongxing. SIS Error Statistical Analysis of Beidou Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 271-274. DOI: 10.13203/j.whugis20120062
    [7]ZHANG Xing, LI Qingquan, FANG Zhixiang, HUANG Ling. Landmark and Branch-based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1239-1242.
    [8]FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194.
    [9]GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913.
    [10]ZHANG Xing, LI Qingquan, FANG Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1240-1244.
  • Cited by

    Periodical cited type(6)

    1. 李渊,白焕霞,梁嘉祺,李锐,杜亚男,杨盟盛. 虚拟旅游空间记忆匹配性与影响因素研究——基于眼动实验和认知地图的分析. 旅游科学. 2024(10): 39-61 .
    2. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(22): 59-64+115 .
    3. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(20): 59-64+115 .
    4. 晋良海,方梅,张倩,陈云,邵波. 公共通道行人非理性切变行为效应仿真. 系统工程学报. 2023(05): 601-613 .
    5. 应申,苏俊如,刘之林,张雯博. 空间路线描绘:以大学生入学路线的心像地图为例. 测绘工程. 2022(01): 1-11 .
    6. 刘兵,孟立秋. 扩展现实与地理空间认知研究进展与展望. 武汉大学学报(信息科学版). 2022(12): 2047-2053 .

    Other cited types(7)

Catalog

    Article views (836) PDF downloads (94) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return