GUO Ning, XIONG Wei, OUYANG Xue, YANG Anran, WU Ye, CHEN Luo, JING Ning. Multi-level Similarity Sub-segment Matching Method for Spatiotemporal Trajectory[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1390-1397. DOI: 10.13203/j.whugis20200170
Citation: GUO Ning, XIONG Wei, OUYANG Xue, YANG Anran, WU Ye, CHEN Luo, JING Ning. Multi-level Similarity Sub-segment Matching Method for Spatiotemporal Trajectory[J]. Geomatics and Information Science of Wuhan University, 2022, 47(9): 1390-1397. DOI: 10.13203/j.whugis20200170

Multi-level Similarity Sub-segment Matching Method for Spatiotemporal Trajectory

Funds: 

The National Natural Science Foundation of China 41971362

The National Natural Science Foundation of China 41871284

More Information
  • Author Bio:

    GUO Ning, PhD, specializes in spatiotemporal data modeling and analysis, battlefield environment simulation, spatial database and GIS. E-mail: guoning10@nudt.edu.cn

  • Corresponding author:

    XIONG Wei, PhD, associate professor. E-mail: xiongwei@nudt.edu.cn

  • Received Date: April 16, 2020
  • Available Online: September 19, 2022
  • Published Date: September 04, 2022
  •   Objectives  Trajectory subsegment matching is an important part of trajectory pattern mining. Its applications span many scenarios, such as user recommendation, abnormal movement detection and prevention of infectious diseases. Traditional trajectory matching methods are mainly based on classical distanc‍es or similarity measures, which are of high complexity and the accuracy is seriously affected by data noise.
      Methods  We firstly propose a multi-level trajectory code tree structure that integrates adaptive Hilbert geographic grid coding. A hierarchical organizational form and sub-segment subordinate relationship expression structure are formed from the entire segment of the trajectory to the smallest segment. Then a sub-segment similarity matching algorithm is designed based on the trajectory segment code tree to transform complex spatial calculation into string matching operation, which greatly reduces the computational complexity of similar matching of sub-segments.
      Results  Experiments on actual trajectory data show that the efficiency of the proposed method achieved more than an order of magnitude improvement over the classical distance-based similarity measurement method without affecting accuracy.
      Conclusions  We proposed trajectory subsegment matching method greatly reduce the computational complexity with acceptable accuracy, which has high application value in the field of multi-granulate trajectory pattern mining and similarity analysis.
  • [1]
    Lim E C, Shim C B. Similarity Search Algorithm for Efficient Sub-trajectory Matching in Moving Databases[C]// Computational Science-ICCS, Beijing, China, 2007
    [2]
    Keogh E, Ratanamahatana C A. Exact Indexing of Dynamic Time Warping[J]. Knowledge and Information Systems, 2005, 7(3): 358-386 doi: 10.1007/s10115-004-0154-9
    [3]
    Buchin K, Buchin M, Gudmundsson J, et al. Detecting Commuting Patterns by Clustering Subtrajectories[M]// Algorithms and Computation. Berlin, Germany: Springer, 2008
    [4]
    Godau M. A Natural Metric for Curves-Computing the Distance for Polygonal Chains and Approximation Algorithms[C]//The 8th Annual Symposium on Theoretical Aspects of Computer Science, Hamburg, Germany, 1991
    [5]
    Buchin K, Buchin M, Kreveld M, et al. Finding Long and Similar Parts of Trajectories[J]. Computational Geometry, 2011, 44(9): 465-476 doi: 10.1016/j.comgeo.2011.05.004
    [6]
    Xie M. EDS: A Segment-Based Distance Measure for Sub-trajectory Similarity Search[C]// ACM SIGMOD International Conference on Management of Data, Snowbird, USA, 2014
    [7]
    Chen Y J, Shen H, Tian H. Clustering Subtrajectories of Moving Objects Based on a Distance Metric with Multi-dimensional Weights[C]//The 6th International Symposium on Parallel Architectures, Algorithms and Programming, Beijing, China, 2014
    [8]
    Furtado A S, Kopanaki D, Alvares L O, et al. Multidimensional Similarity Measuring for Semantic Trajectories[J]. Transactions in GIS, 2016, 20(2): 280-298 doi: 10.1111/tgis.12156
    [9]
    Mao Y C, Zhong H S, Xiao X J, et al. A SegmentBased Trajectory Similarity Measure in the Urban Transportation Systems[J]. Sensors, 2017, 17(3), DOI: org/ 10.3390/s17030524
    [10]
    Yoo J J, Loh W K, Whang K Y. Indexable SubTrajectory Matching Using Multi-segment Approximation: A Partition-and-Stitch Framework[J]. The Journal of Supercomputing, 2019, 75(9): 6129-6157 doi: 10.1007/s11227-019-02813-w
    [11]
    Vlachos M, Kollios G, Gunopulos D. Discovering Similar Multidimensional Trajectories[C]//The 18th International Conference on Data Engineering, San Jose, USA, 2002
    [12]
    Chen L, Ng R. On the Marriage of Lp-Norms and Edit Distance[C]// The 30th International Conference on Very Large Data Bases, Toronto, Canada, 2004
    [13]
    Chen L, Tamer Özsu M, Oria V. Robust and Fast Similarity Search for Moving Object Trajectories [C]// The 31st International Conference on Management of Data, Baltimore, USA, 2005
    [14]
    叶小平, 郭欢, 汤庸, 等. 基于相点分析的移动数据索引技术[J]. 计算机学报, 2011, 34(2): 256-274 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201102008.htm

    Ye Xiaoping, Guo Huan, Tang Yong, et al. Index of Mobile Data Based on Phrase Points Analysis[J]. Chinese Journal of Computers, 2011, 34(2): 256-274 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201102008.htm
    [15]
    朱庆, 龚俊. 一种改进的真三维R树空间索引方法[J]. 武汉大学学报·信息科学版, 2006(4): 340-343 http://ch.whu.edu.cn/article/id/2438

    Zhu Qing, Gong Jun. An I mproved Full 3D R-Tree Spatial Index Method[J]. Geomatics and Information Science of Wuhan University, 2006(4): 340-343 http://ch.whu.edu.cn/article/id/2438
    [16]
    王飞, 庞悦, 周向东, 等. 一种面向相似查询的轨迹索引方法[J]. 计算机应用与软件, 2017, 34(11): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201711001.htm

    Wang Fei, Pang Yue, Zhou Xiangdong, et al. A Method of Track Index for Similarity Search[J]. Computer Applications and Software, 2017, 34 (11): 1-5 https://www.cnki.com.cn/Article/CJFDTOTAL-JYRJ201711001.htm
    [17]
    Van L H, Takasu A. An Efficient Distributed Index for Geospatial Databases[M]// Database and Expert Systems Applications. Cham: Springer, 2015
    [18]
    Lu N, Cheng C Q, Jin A, et al. An Index and Retrieval Method of Spatial Data Based on GeoSOT Global Discrete Grid System[C]//IEEE International Geoscience and Remote Sensing Symposium, Melbourne, Australia, 2013
    [19]
    宋树华, 程承旗, 濮国梁, 等. 全球遥感数据剖分组织的GeoSOT网格应用[J]. 测绘学报, 2014, 43 (8): 869-876 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201408016.htm

    Song Shuhua, Cheng Chengqi, Pu Guoliang, et al. Global Remote Sensing Data Subdivision Organization Based on GeoSOT[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(8): 869-876 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201408016.htm
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (1715) PDF downloads (135) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return