LI Teng, ZHANG Baogang, CHENG Xiao, ZHANG Yuanyuan, HUI Fengming, ZHAO Tiancheng, QIN Weijia, LIANG Jianhong, YANG Yuande, LIU Xuying, LI Xinqing. Applications of UAVs in Antarctic Scientific Research: Progress and Prospect[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 651-664. DOI: 10.13203/j.whugis20200098
Citation: LI Teng, ZHANG Baogang, CHENG Xiao, ZHANG Yuanyuan, HUI Fengming, ZHAO Tiancheng, QIN Weijia, LIANG Jianhong, YANG Yuande, LIU Xuying, LI Xinqing. Applications of UAVs in Antarctic Scientific Research: Progress and Prospect[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 651-664. DOI: 10.13203/j.whugis20200098

Applications of UAVs in Antarctic Scientific Research: Progress and Prospect

Funds: 

The National Natural Science Foundation of China 41830536

The National Natural Science Foundation of China 41925027

The National Natural Science Foundation of China 41676182

the Chinese Polar Environment Comprehensive Investigation and Assessment Program 

the China Scholarship Council United Kingdom‐China Joint Research and Innovation Partnership Fund 201806040298

More Information
  • Author Bio:

    LI Teng, PhD, specializes in Antarctic ice sheet and climate change. E‐mail: liteng28@mail.sysu.edu.cn

  • Corresponding author:

    CHENG Xiao, PhD, professor. E‐mail: chengxiao9@mail.sysu.edu.cn

  • Received Date: July 02, 2020
  • Available Online: July 26, 2023
  • Published Date: May 04, 2022
  •   Objectives  As an emerging airborne remote sensing system, unmanned aerial vehicle (UAV) falls into multiple categories with various payloads, such as the multi‐rotor and fixed‐wing ones. Despite the harsh climatic condition, UAV is widely used in many Antarctic fields of basic and applied science, which still lacks a comprehensive and systematic literature review.
      Methods  We firstly discuss the special impact of Antarctic environmental conditions (meteorology, electromagnetic field, light, etc.) on the UAV operation. A comprehensive literature retrieval is subsequently presented on the current application of UAV in Antarctic research and expedition. We sort out 104 papers according to the time of publication, main journals, study areas, nations, and institutions. Representative literature is reviewed in seven application ar‍eas, including aeromechanics, atmosphere, sea ice and iceberg, glacier, geomorphology and geomagnetism, ecology‐vegetation as well as ecology‐animals. We retrospect the development and achievement of UAV's applications in the Chinese national Antarctic research and summarize the limitations of the research on the application of UAV in Antarctica.
      Results  A number of environmental factors need to be considered before the UAV missions, such as the meteorological conditions, electromagnetic field, solar radiations, and flight regulations. According to the review, half of the literature belongs to the journal paper, mostly in Polar Biology, Polar Science, and Remote Sensing. The earliest UAV research in Antarctica was published in 2004, followed by a productive period of International Polar Year in 2008. The first‐tier countries including the USA, Australia, and Germany, led the progress in the research on UAVs in Antarctica. Meanwhile, the dominant role of top universities stood out via various collaborations. The UAV can also be classified into multiple categories according to the payload, such as the industrial‐ or consumer‐grade optical cameras, radiosonde, synthetic aperture radar, and light detecting and ranging(LiDAR), among which consumer‐grade camera is widely used in Antarctic investigations. China's Antarctic expedition team initiated the Antarctic UAV program in 2007 and had carried out at least 18 flight missions by 2020. The flights cov‍ered Zhongshan Station, The Great Wall Station, Inexpression Island, and the inland ice sheet, from which the collected data were employed to support the glaciological, geomorphic, and biological stud‍ies.
      Conclusions  The UAV remote sensing, as the essential technology in the"Air‐Space‐Ground" polar observation system, has been increasingly upgraded in the recent decade. The flight experiments cov‍ered the primary research topics and research fields in Antarctic science. In general, the application and development of Antarctic UAV in China lie in the second tier, falling behind the USA and Australia. In the end, accord‍ing to the current development of Antarctic UAV in China, this paper provides guidance for China's Antarctic expedition team in the future: (1) Develop new UAV models; (2) Make breakthroughs in the battery technology; (3) Couple multiple sensors; (4) Encourage trans‐disciplinary collaboration; (5) Promote for‍eign communication and sharing; (6) Participate in the international management.
  • [1]
    晏磊, 廖小罕, 周成虎, 等. 中国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4): 476-495 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201904003.htm

    Yan Lei, Liao Xiaohan, Zhou Chenghu, et al. The Impact of UAV Remote Sensing Technology on the Industrial Development of China: A Review[J]. Journal of Geo -Information Science, 2019, 21(4): 476-495 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201904003.htm
    [2]
    李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报·信息科学版, 2014, 39(5): 505-513 doi: 10.13203/j.whugis20140045

    Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513 doi: 10.13203/j.whugis20140045
    [3]
    Colomina I, Molina P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79-97 doi: 10.1016/j.isprsjprs.2014.02.013
    [4]
    Liu Y, Moore J C, Cheng X, et al. Ocean -Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3263-3268 doi: 10.1073/pnas.1415137112
    [5]
    廖小罕, 肖青, 张颢. 无人机遥感: 大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6): 1046-1052 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906004.htm

    Liao Xiaohan, Xiao Qing, Zhang Hao. UAV Remote Sensing: Popularization and Expand Application Development Trend[J]. Journal of Remote Sensing, 2019, 23(6): 1046-1052 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906004.htm
    [6]
    Gaffey C, Bhardwaj A. Applications of Unmanned Aerial Vehicles in Cryosphere: Latest Advances and Prospects[J]. Remote Sensing, 2020, 12 (6) : 948-987 doi: 10.3390/rs12060948
    [7]
    Li T, Zhang B G, Cheng X, et al. Resolving FineScale Surface Features on Polar Sea Ice: A First Assessment of UAS Photogrammetry Without Ground Control[J]. Remote Sensing, 2019, 11(7): 784-806 doi: 10.3390/rs11070784
    [8]
    Liang J H, Lei X S, Wang S, et al. A Small Unmanned Aerial Vehicle for Polar Research[C]// 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, 2008
    [9]
    Turner J. The Evolution Unmanned Aerial Vehicles (UAV), Emerging Policy Challenges and Future UAV Use in Antarctica[EB/OL]. [2020-06-30]. https://ir.canterbury.ac.nz/bitstream/handle/10092/13843/Jeff%20Turner_416025_assignsubmission_file_PCAS18%20ANTA602%20CriticalReview%20Jeff%20Turner.pdf?sequence=12016
    [10]
    李芳玲, 华薇娜. 极地无人机研究文献的调研与分析[J]. 科技视界, 2015(13): 56-57 https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201513036.htm

    Li Fangling, Hua Weina. A Study About Literature on the Theme of the Application of Unmanned Aerial Vehicle(UAV)in Polar[J]. Science & Technology Vision, 2015(13): 56-57 https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201513036.htm
    [11]
    Goraj Z. A Specialized UAV for Surveillance in Windy, Turbulent Environment of the Antarctic Coast[C]// The 29th Congress of the International Council of the Aeronautical Sciences, Petersburg, Russia, 2014
    [12]
    Lynnes A. Operators Agree to Ban the Recreational Use of UAVs in Antarctica's Coastal Areas[EB/ OL]. [2020-06-25]. https://iaato.org/documents/10157/853702/IAATO+bans+UAVs+in+coastal+areas/d19d041c-24c4-43c8-a8a9-2d10d9026633
    [13]
    COMNAP UAS Working Group. Antarctic Unmanned Aerial Systems (UAS) Operator's Handbook[EB/OL]. [2020-05-20]. https://documents.ats.aq/ATCM39/att/ATCM39_att011_e.pdf
    [14]
    Fantoni R, Barbini R, Colao F, et al. Integration of Two LiDAR Fluorosensor Payloads in Submarine ROV and Flying UAV Platforms[C]//EARSeL, Strasbourg, France, 2004
    [15]
    Blake W, Ledford J, Allen C, et al. A VHF Radar for Deployment on a UAV for Basal Imaging of Polar Ice[C]// IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 2008
    [16]
    Sanderson K. Unmanned Craft Chart the Antarctic Winter[EB/OL]. [2020-04-10]. https://www.nature.com/articles/news.2008.680
    [17]
    Spiess T, Bange J, Buschmann M, et al. First Application of the Meteorological Mini-UAV'M2AV' [J]. Meteorologische Zeitschrift, 2007, 16 (2) : 159-169 doi: 10.1127/0941-2948/2007/0195
    [18]
    Funaki M, Hirasawa N. Outline of a Small Unmanned Aerial Vehicle (Ant-Plane) Designed for Antarctic Research[J]. Polar Science, 2008, 2(2): 129-142 doi: 10.1016/j.polar.2008.05.002
    [19]
    Leuschen C, Hale R, Keshmiri S, et al. UAS-Based Radar Sounding of the Polar Ice Sheets[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(1): 8-17 doi: 10.1109/MGRS.2014.2306353
    [20]
    Turner D, Lucieer A, Malenovský Z, et al. Assessment of Antarctic Moss Health from Multi-Sensor UAS Imagery with Random Forest Modelling[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 168-179 doi: 10.1016/j.jag.2018.01.004
    [21]
    Miranda V, Pina P, Heleno S, et al. Monitoring Recent Changes of Vegetation in Fildes Peninsula (King George Island, Antarctica)Through Satellite Imagery Guided by UAV Surveys[J]. The Science of the Total Environment, 2020, 704: 135295 doi: 10.1016/j.scitotenv.2019.135295
    [22]
    Pfeifer C, Barbosa A, Mustafa O, et al. Using Fixed-Wing UAV for Detecting and Mapping the Distribution and Abundance of Penguins on the South Shetlands Islands, Antarctica[J]. Drones, 2019, 3(2): 39-60 doi: 10.3390/drones3020039
    [23]
    Barták M, Váczi P, Stachoň Z, et al. Vegetation Mapping of Moss-Dominated Areas of Northern Part of James Ross Island(Antarctica)and a Suggestion of Protective Measures[J]. Czech Polar Reports, 2015, 5(1): 75-87 doi: 10.5817/CPR2015-1-8
    [24]
    Higashino S, Funaki M, Hirasawa N, et al. Development and Operational Experiences of UAVs for Scientific Research in Antarctica[M]//Intelligent Systems, Control and Automation: Science and Engineering. Tokyo, Japan: Springer, 2013
    [25]
    Rümmler M C, Mustafa O, Maercker J, et al. Measuring the Influence of Unmanned Aerial Vehicles on Adélie Penguins[J]. Polar Biology, 2016, 39(7): 1329-1334 doi: 10.1007/s00300-015-1838-1
    [26]
    Bliakharskii D P, Florinsky I V, Skrypitsyna T N. Modelling Glacier Topography in Antarctica Using Unmanned Aerial Survey: Assessment of Opportunities[J]. International Journal of Remote Sensing, 2019, 40(7): 2517-2541 doi: 10.1080/01431161.2019.1584926
    [27]
    Zmarz A, Korczak-Abshire M, Storvold R, et al. Indicator Species Population Monitoring in Antarctica with UAV[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, 40(W4): 189-193
    [28]
    Cassano J J, Seefeldt M W, Palo S, et al. Observations of the Atmosphere and Surface State Over Terra Nova Bay, Antarctica, Using Unmanned Aerial Systems[J]. Earth System Science Data, 2016, 8 (1): 115-126 doi: 10.5194/essd-8-115-2016
    [29]
    冯洋, 曲林, 唐井刚. 倾斜摄影无人机极地应用保障方法研究[J]. 测绘与空间地理信息, 2016, 39(12): 192-193 doi: 10.3969/j.issn.1672-5867.2016.12.059

    Feng Yang, Qu Lin, Tang Jinggang. Research on the Safeguard Measures of the Oblique Photogram-metry UAV Working in the Antarctic[J]. Geomatics & Spatial Information Technology, 2016, 39(12): 192-193 doi: 10.3969/j.issn.1672-5867.2016.12.059
    [30]
    Higashino S I, Hayashi M, Nagasaki S, et al. A Balloon-Assisted Gliding UAV for Aerosol Observation in Antarctica[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2014, 12: a35-a41 doi: 10.2322/tastj.12.a35
    [31]
    Cassano J. Observations of Air-Sea Interactions in an Antarctic Coastal Polynya Using Small Unmanned Aerial Systems[C]//American Geophysical Union-Ocean Sciences Meeting, San Francisco, USA, 2016
    [32]
    杨必胜, 李健平. 轻小型低成本无人机激光扫描系统研制与实践[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1972-1978 doi: 10.13203/j.whugis20180265

    Yang Bisheng, Li Jianping. Implementation of a Low-Cost Mini-UAV Laser Scanning System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1972 -1978 doi: 10.13203/j.whugis20180265
    [33]
    Turner D, Lucieer A, Malenovský Z, et al. Spatial Co-registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV Over Antarctic Moss Beds[J]. Remote Sensing, 2014, 6(5): 4003-4024 doi: 10.3390/rs6054003
    [34]
    Lucieer A, Malenovský Z, Veness T, et al. Hyper UAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System[J]. Journal of Field Robotics, 2014, 31(4): 571-590 doi: 10.1002/rob.21508
    [35]
    Lorenz R D. Titan Bumblebee: A 1 kg Lander-Launched UAV Concept[J]. Journal of the British Interplanetary Society: JBIS, 2008, 61(4): 118-124
    [36]
    Rodzewicz M, Goraj Z, Tomaszewski A. Design and Testing of Three Tailless Unmanned Aerial Vehicle Configurations Built for Surveillance in Antarctic Environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(14): 2598-2614 doi: 10.1177/0954410018797855
    [37]
    雷旭升, 王挺, 梁建宏, 等. 极地科考小型无人飞行器[J]. 北京航空航天大学学报, 2009, 35(3): 267-271 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200903000.htm

    Lei Xusheng, Wang Ting, Liang Jianhong, et al. Small Unmanned Aerial Vehicle for Polar Research [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 267-271 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200903000.htm
    [38]
    Cassano J. Use of UAVs in Extreme Environments: UAV Observations of the Antarctic Atmosphere and Surface During Winter[C]//AGU Fall Meeting, San Francisco, USA, 2010
    [39]
    Knuth S L, Cassano J J, Maslanik J A, et al. Unmanned Aircraft System Measurements of the Atmospheric Boundary Layer Over Terra Nova Bay, Antarctica[J]. Earth System Science Data, 2013, 5 (1): 57-69 doi: 10.5194/essd-5-57-2013
    [40]
    Rennie J. Aurora Australis Uses Drone Technology to Navigate Sea Ice[EB/OL]. [2020-02-10]. http://www.antarctica.gov.au/news/2015/auroraaustralis-uses-drone-technology-to-navigate-sea-ice
    [41]
    McGill P R, Reisenbichler K R, Etchemendy S A, et al. Aerial Surveys and Tagging of Free-Drifting Icebergs Using an Unmanned Aerial Vehicle(UAV) [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2011, 58(11/12): 1318-1326
    [42]
    Bhardwaj A, Sam L, Akanksha, et al. UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects[J]. Remote Sensing of Environment, 2016, 175: 196-204 doi: 10.1016/j.rse.2015.12.029
    [43]
    Florinsky I V, Bliakharskii D P. The 2017 Catastrophic Subsidence in the DÅLK Glacier, East Antarctica: Unmanned Aerial Survey and Terrain Modelling[J]. Remote Sensing Letters, 2019, 10 (4): 333-342 doi: 10.1080/2150704X.2018.1552810
    [44]
    Dąbski M, Zmarz A, Pabjanek P, et al. UAV-Based Detection and Spatial Analyses of Periglacial Landforms on Demay Point (King George Island, South Shetland Islands, Antarctica)[J]. Geomorphology, 2017, 290: 29-38 doi: 10.1016/j.geomorph.2017.03.033
    [45]
    Westoby M J, Dunning S A, Woodward J, et al. Sedimentological Characterization of Antarctic Moraines Using UAVs and Structure-from-Motion Photogrammetry[J]. Journal of Glaciology, 2015, 61 (230): 1088-1102 doi: 10.3189/2015JoG15J086
    [46]
    Westoby M J, Dunning S A, Woodward J, et al. Interannual Surface Evolution of an Antarctic Blue-Ice Moraine Using Multi-temporal DEMs[J]. Earth Surface Dynamics, 2016, 4(2): 515-529 doi: 10.5194/esurf-4-515-2016
    [47]
    Darren T, Malenovsky Z, Lucieer A, et al. Unmanned Aircraft Systems(UAS)for Non-destructive Health Mapping of Polar Vegetation: Showcase of East Antarctic Moss Beds[C]//12th SCAR Biology Symposium, Leuven, Belgium, 2017
    [48]
    Goebel M E, Perryman W L, Hinke J T, et al. A Small Unmanned Aerial System for Estimating Abundance and Size of Antarctic Predators[J]. Polar Biology, 2015, 38(5): 619-630 doi: 10.1007/s00300-014-1625-4
    [49]
    Ratcliffe N, Guihen D, Robst J, et al. A Protocol for the Aerial Survey of Penguin Colonies Using UAVs[J]. Journal of Unmanned Vehicle Systems, 2015, 3(3): 95-101 doi: 10.1139/juvs-2015-0006
    [50]
    冀明, 张宝钢, 张媛媛, 等. 南极企鹅数量识别及变化趋势分析: 基于无人机航拍的高分辨率影像[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 25-35 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901004.htm

    Ji Ming, Zhang Baogang, Zhang Yuanyuan, et al. Sizing and Trend Analysis of Penguin Numbers in Antarctic from High Resolution Photography by Unmanned Aerial Vehicles[J]. Journal of Beijing Normal University(Natural Science), 2019, 55(1): 25-35 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901004.htm
    [51]
    Rümmler C, Esefeld J, Mustafa O, et al. Impact of Fly-Overs with Different UAV Models on Various Antarctic Species[C]//The 27th International Polar Conference, Rostock, Germany, 2018
    [52]
    Oosthuizen W C, Krüger L, Jouanneau W, et al. Unmanned Aerial Vehicle (UAV) Survey of the Antarctic Shag (Leucocarbo Bransfieldensis) Breeding Colony at Harmony Point, Nelson Island, South Shetland Islands[J]. Polar Biology, 2020, 43(2): 187-191 doi: 10.1007/s00300-019-02616-y
    [53]
    International Whaling Commission. Whale Watching-Platforms of Opportunity in New Frontiers[EB/OL]. [2020-01-10]. https://wwhandbook.iwc.int/en/case-studies/whale-watching-in-the-antarctic
    [54]
    李丙瑞, 秦为稼, 郭井学, 等. 智能机器人技术在南极科学考察事业中的试验应用[J]. 极地研究, 2009, 21(4): 336-343 https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200904011.htm

    Li Bingrui, Qin Weijia, Guo Jingxue, et al. The Experiment and Application of Intelligent Robot Techniques in the Antarctic Expedition[J]. Chinese Journal of Polar Research, 2009, 21(4): 336-343 https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200904011.htm
    [55]
    白阳. 中国遥感无人机首航南极中山站[N]. 人民日报, 2014-12-26(3)
    [56]
    张宝钢, 赵剑, 马驰, 等. 基于无人机遥感技术的南极冰川表面冰坑监测[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 19-24 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901003.htm

    Zhang Baogang, Zhao Jian, Ma Chi, et al. UAV Photogrammetric Monitoring of Antarctic Ice Doline Formation[J]. Journal of Beijing Normal University(Natural Science), 2019, 55(1): 19-24 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901003.htm
    [57]
    Li T, Liu Y, Li T, et al. Antarctic Surface Ice Velocity Retrieval from MODIS-Based Mosaic of Antarctica(MOA)[J]. Remote Sensing, 2018, 10 (7): 1045-1063 doi: 10.3390/rs10071045
    [58]
    Ai S T, Wang S S, Li Y S, et al. High -Precision Ice Flow Velocities from Ground Observations on Dalk Glacier, Antarctica[J]. Polar Science, 2019, 19: 13-23 doi: 10.1016/j.polar.2018.09.003
    [59]
    赵天成. 基于无人机的南极达尔克冰川观测与模拟[D]. 北京: 北京师范大学, 2018

    Zhao Tiancheng. Observation and Modification on Dalk Glacier, Antarctica Based on the Unmanned Aerial Vehicle[D]. Beijing: Beijing Normal University, 2018
  • Related Articles

    [1]LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310
    [2]ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465
    [3]FANG Hao, SONG Zhangtong, YANG Liu, MA Yitao, QIN Qianqing. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124-1130. DOI: 10.13203/j.whugis20180066
    [4]FANG Zhixiang, XU Hong, SHAW Shih-Lung, LI Qingquan, YUAN Shujun, LI Ling. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182. DOI: 10.13203/j.whugis20180170
    [5]LIU Tao, ZHANG Xing, LI Qingquan, FANG Zhixiang. An Indoor Pedestrian Route Planning Algorithm Based on Landmark Visibility[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 43-48. DOI: 10.13203/j.whugis20150387
    [6]ZHANG Qinghua, SUI Lifen, JIA Xiaolin, ZHU Yongxing. SIS Error Statistical Analysis of Beidou Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 271-274. DOI: 10.13203/j.whugis20120062
    [7]ZHANG Xing, LI Qingquan, FANG Zhixiang, HUANG Ling. Landmark and Branch-based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1239-1242.
    [8]FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194.
    [9]GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913.
    [10]ZHANG Xing, LI Qingquan, FANG Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1240-1244.
  • Cited by

    Periodical cited type(6)

    1. 李渊,白焕霞,梁嘉祺,李锐,杜亚男,杨盟盛. 虚拟旅游空间记忆匹配性与影响因素研究——基于眼动实验和认知地图的分析. 旅游科学. 2024(10): 39-61 .
    2. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(22): 59-64+115 .
    3. 李宜倩,乔子轩,宋晓蕾. 产生追踪手势对个体寻路绩效增强的设计研究. 包装工程. 2023(20): 59-64+115 .
    4. 晋良海,方梅,张倩,陈云,邵波. 公共通道行人非理性切变行为效应仿真. 系统工程学报. 2023(05): 601-613 .
    5. 应申,苏俊如,刘之林,张雯博. 空间路线描绘:以大学生入学路线的心像地图为例. 测绘工程. 2022(01): 1-11 .
    6. 刘兵,孟立秋. 扩展现实与地理空间认知研究进展与展望. 武汉大学学报(信息科学版). 2022(12): 2047-2053 .

    Other cited types(7)

Catalog

    Article views (2611) PDF downloads (334) Cited by(13)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return