Citation: | LI Teng, ZHANG Baogang, CHENG Xiao, ZHANG Yuanyuan, HUI Fengming, ZHAO Tiancheng, QIN Weijia, LIANG Jianhong, YANG Yuande, LIU Xuying, LI Xinqing. Applications of UAVs in Antarctic Scientific Research: Progress and Prospect[J]. Geomatics and Information Science of Wuhan University, 2022, 47(5): 651-664. DOI: 10.13203/j.whugis20200098 |
[1] |
晏磊, 廖小罕, 周成虎, 等. 中国无人机遥感技术突破与产业发展综述[J]. 地球信息科学学报, 2019, 21(4): 476-495 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201904003.htm
Yan Lei, Liao Xiaohan, Zhou Chenghu, et al. The Impact of UAV Remote Sensing Technology on the Industrial Development of China: A Review[J]. Journal of Geo -Information Science, 2019, 21(4): 476-495 https://www.cnki.com.cn/Article/CJFDTOTAL-DQXX201904003.htm
|
[2] |
李德仁, 李明. 无人机遥感系统的研究进展与应用前景[J]. 武汉大学学报·信息科学版, 2014, 39(5): 505-513 doi: 10.13203/j.whugis20140045
Li Deren, Li Ming. Research Advance and Application Prospect of Unmanned Aerial Vehicle Remote Sensing System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 505-513 doi: 10.13203/j.whugis20140045
|
[3] |
Colomina I, Molina P. Unmanned Aerial Systems for Photogrammetry and Remote Sensing: A Review [J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92: 79-97 doi: 10.1016/j.isprsjprs.2014.02.013
|
[4] |
Liu Y, Moore J C, Cheng X, et al. Ocean -Driven Thinning Enhances Iceberg Calving and Retreat of Antarctic Ice Shelves[J]. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(11): 3263-3268 doi: 10.1073/pnas.1415137112
|
[5] |
廖小罕, 肖青, 张颢. 无人机遥感: 大众化与拓展应用发展趋势[J]. 遥感学报, 2019, 23(6): 1046-1052 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906004.htm
Liao Xiaohan, Xiao Qing, Zhang Hao. UAV Remote Sensing: Popularization and Expand Application Development Trend[J]. Journal of Remote Sensing, 2019, 23(6): 1046-1052 https://www.cnki.com.cn/Article/CJFDTOTAL-YGXB201906004.htm
|
[6] |
Gaffey C, Bhardwaj A. Applications of Unmanned Aerial Vehicles in Cryosphere: Latest Advances and Prospects[J]. Remote Sensing, 2020, 12 (6) : 948-987 doi: 10.3390/rs12060948
|
[7] |
Li T, Zhang B G, Cheng X, et al. Resolving FineScale Surface Features on Polar Sea Ice: A First Assessment of UAS Photogrammetry Without Ground Control[J]. Remote Sensing, 2019, 11(7): 784-806 doi: 10.3390/rs11070784
|
[8] |
Liang J H, Lei X S, Wang S, et al. A Small Unmanned Aerial Vehicle for Polar Research[C]// 2008 IEEE International Conference on Automation and Logistics, Qingdao, China, 2008
|
[9] |
Turner J. The Evolution Unmanned Aerial Vehicles (UAV), Emerging Policy Challenges and Future UAV Use in Antarctica[EB/OL]. [2020-06-30]. https://ir.canterbury.ac.nz/bitstream/handle/10092/13843/Jeff%20Turner_416025_assignsubmission_file_PCAS18%20ANTA602%20CriticalReview%20Jeff%20Turner.pdf?sequence=12016
|
[10] |
李芳玲, 华薇娜. 极地无人机研究文献的调研与分析[J]. 科技视界, 2015(13): 56-57 https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201513036.htm
Li Fangling, Hua Weina. A Study About Literature on the Theme of the Application of Unmanned Aerial Vehicle(UAV)in Polar[J]. Science & Technology Vision, 2015(13): 56-57 https://www.cnki.com.cn/Article/CJFDTOTAL-KJSJ201513036.htm
|
[11] |
Goraj Z. A Specialized UAV for Surveillance in Windy, Turbulent Environment of the Antarctic Coast[C]// The 29th Congress of the International Council of the Aeronautical Sciences, Petersburg, Russia, 2014
|
[12] |
Lynnes A. Operators Agree to Ban the Recreational Use of UAVs in Antarctica's Coastal Areas[EB/ OL]. [2020-06-25]. https://iaato.org/documents/10157/853702/IAATO+bans+UAVs+in+coastal+areas/d19d041c-24c4-43c8-a8a9-2d10d9026633
|
[13] |
COMNAP UAS Working Group. Antarctic Unmanned Aerial Systems (UAS) Operator's Handbook[EB/OL]. [2020-05-20]. https://documents.ats.aq/ATCM39/att/ATCM39_att011_e.pdf
|
[14] |
Fantoni R, Barbini R, Colao F, et al. Integration of Two LiDAR Fluorosensor Payloads in Submarine ROV and Flying UAV Platforms[C]//EARSeL, Strasbourg, France, 2004
|
[15] |
Blake W, Ledford J, Allen C, et al. A VHF Radar for Deployment on a UAV for Basal Imaging of Polar Ice[C]// IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 2008
|
[16] |
Sanderson K. Unmanned Craft Chart the Antarctic Winter[EB/OL]. [2020-04-10]. https://www.nature.com/articles/news.2008.680
|
[17] |
Spiess T, Bange J, Buschmann M, et al. First Application of the Meteorological Mini-UAV'M2AV' [J]. Meteorologische Zeitschrift, 2007, 16 (2) : 159-169 doi: 10.1127/0941-2948/2007/0195
|
[18] |
Funaki M, Hirasawa N. Outline of a Small Unmanned Aerial Vehicle (Ant-Plane) Designed for Antarctic Research[J]. Polar Science, 2008, 2(2): 129-142 doi: 10.1016/j.polar.2008.05.002
|
[19] |
Leuschen C, Hale R, Keshmiri S, et al. UAS-Based Radar Sounding of the Polar Ice Sheets[J]. IEEE Geoscience and Remote Sensing Magazine, 2014, 2(1): 8-17 doi: 10.1109/MGRS.2014.2306353
|
[20] |
Turner D, Lucieer A, Malenovský Z, et al. Assessment of Antarctic Moss Health from Multi-Sensor UAS Imagery with Random Forest Modelling[J]. International Journal of Applied Earth Observation and Geoinformation, 2018, 68: 168-179 doi: 10.1016/j.jag.2018.01.004
|
[21] |
Miranda V, Pina P, Heleno S, et al. Monitoring Recent Changes of Vegetation in Fildes Peninsula (King George Island, Antarctica)Through Satellite Imagery Guided by UAV Surveys[J]. The Science of the Total Environment, 2020, 704: 135295 doi: 10.1016/j.scitotenv.2019.135295
|
[22] |
Pfeifer C, Barbosa A, Mustafa O, et al. Using Fixed-Wing UAV for Detecting and Mapping the Distribution and Abundance of Penguins on the South Shetlands Islands, Antarctica[J]. Drones, 2019, 3(2): 39-60 doi: 10.3390/drones3020039
|
[23] |
Barták M, Váczi P, Stachoň Z, et al. Vegetation Mapping of Moss-Dominated Areas of Northern Part of James Ross Island(Antarctica)and a Suggestion of Protective Measures[J]. Czech Polar Reports, 2015, 5(1): 75-87 doi: 10.5817/CPR2015-1-8
|
[24] |
Higashino S, Funaki M, Hirasawa N, et al. Development and Operational Experiences of UAVs for Scientific Research in Antarctica[M]//Intelligent Systems, Control and Automation: Science and Engineering. Tokyo, Japan: Springer, 2013
|
[25] |
Rümmler M C, Mustafa O, Maercker J, et al. Measuring the Influence of Unmanned Aerial Vehicles on Adélie Penguins[J]. Polar Biology, 2016, 39(7): 1329-1334 doi: 10.1007/s00300-015-1838-1
|
[26] |
Bliakharskii D P, Florinsky I V, Skrypitsyna T N. Modelling Glacier Topography in Antarctica Using Unmanned Aerial Survey: Assessment of Opportunities[J]. International Journal of Remote Sensing, 2019, 40(7): 2517-2541 doi: 10.1080/01431161.2019.1584926
|
[27] |
Zmarz A, Korczak-Abshire M, Storvold R, et al. Indicator Species Population Monitoring in Antarctica with UAV[J]. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2015, 40(W4): 189-193
|
[28] |
Cassano J J, Seefeldt M W, Palo S, et al. Observations of the Atmosphere and Surface State Over Terra Nova Bay, Antarctica, Using Unmanned Aerial Systems[J]. Earth System Science Data, 2016, 8 (1): 115-126 doi: 10.5194/essd-8-115-2016
|
[29] |
冯洋, 曲林, 唐井刚. 倾斜摄影无人机极地应用保障方法研究[J]. 测绘与空间地理信息, 2016, 39(12): 192-193 doi: 10.3969/j.issn.1672-5867.2016.12.059
Feng Yang, Qu Lin, Tang Jinggang. Research on the Safeguard Measures of the Oblique Photogram-metry UAV Working in the Antarctic[J]. Geomatics & Spatial Information Technology, 2016, 39(12): 192-193 doi: 10.3969/j.issn.1672-5867.2016.12.059
|
[30] |
Higashino S I, Hayashi M, Nagasaki S, et al. A Balloon-Assisted Gliding UAV for Aerosol Observation in Antarctica[J]. Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan, 2014, 12: a35-a41 doi: 10.2322/tastj.12.a35
|
[31] |
Cassano J. Observations of Air-Sea Interactions in an Antarctic Coastal Polynya Using Small Unmanned Aerial Systems[C]//American Geophysical Union-Ocean Sciences Meeting, San Francisco, USA, 2016
|
[32] |
杨必胜, 李健平. 轻小型低成本无人机激光扫描系统研制与实践[J]. 武汉大学学报·信息科学版, 2018, 43(12): 1972-1978 doi: 10.13203/j.whugis20180265
Yang Bisheng, Li Jianping. Implementation of a Low-Cost Mini-UAV Laser Scanning System[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 1972 -1978 doi: 10.13203/j.whugis20180265
|
[33] |
Turner D, Lucieer A, Malenovský Z, et al. Spatial Co-registration of Ultra-High Resolution Visible, Multispectral and Thermal Images Acquired with a Micro-UAV Over Antarctic Moss Beds[J]. Remote Sensing, 2014, 6(5): 4003-4024 doi: 10.3390/rs6054003
|
[34] |
Lucieer A, Malenovský Z, Veness T, et al. Hyper UAS-Imaging Spectroscopy from a Multirotor Unmanned Aircraft System[J]. Journal of Field Robotics, 2014, 31(4): 571-590 doi: 10.1002/rob.21508
|
[35] |
Lorenz R D. Titan Bumblebee: A 1 kg Lander-Launched UAV Concept[J]. Journal of the British Interplanetary Society: JBIS, 2008, 61(4): 118-124
|
[36] |
Rodzewicz M, Goraj Z, Tomaszewski A. Design and Testing of Three Tailless Unmanned Aerial Vehicle Configurations Built for Surveillance in Antarctic Environment[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2018, 232(14): 2598-2614 doi: 10.1177/0954410018797855
|
[37] |
雷旭升, 王挺, 梁建宏, 等. 极地科考小型无人飞行器[J]. 北京航空航天大学学报, 2009, 35(3): 267-271 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200903000.htm
Lei Xusheng, Wang Ting, Liang Jianhong, et al. Small Unmanned Aerial Vehicle for Polar Research [J]. Journal of Beijing University of Aeronautics and Astronautics, 2009, 35(3): 267-271 https://www.cnki.com.cn/Article/CJFDTOTAL-BJHK200903000.htm
|
[38] |
Cassano J. Use of UAVs in Extreme Environments: UAV Observations of the Antarctic Atmosphere and Surface During Winter[C]//AGU Fall Meeting, San Francisco, USA, 2010
|
[39] |
Knuth S L, Cassano J J, Maslanik J A, et al. Unmanned Aircraft System Measurements of the Atmospheric Boundary Layer Over Terra Nova Bay, Antarctica[J]. Earth System Science Data, 2013, 5 (1): 57-69 doi: 10.5194/essd-5-57-2013
|
[40] |
Rennie J. Aurora Australis Uses Drone Technology to Navigate Sea Ice[EB/OL]. [2020-02-10]. http://www.antarctica.gov.au/news/2015/auroraaustralis-uses-drone-technology-to-navigate-sea-ice
|
[41] |
McGill P R, Reisenbichler K R, Etchemendy S A, et al. Aerial Surveys and Tagging of Free-Drifting Icebergs Using an Unmanned Aerial Vehicle(UAV) [J]. Deep Sea Research Part Ⅱ: Topical Studies in Oceanography, 2011, 58(11/12): 1318-1326
|
[42] |
Bhardwaj A, Sam L, Akanksha, et al. UAVs as Remote Sensing Platform in Glaciology: Present Applications and Future Prospects[J]. Remote Sensing of Environment, 2016, 175: 196-204 doi: 10.1016/j.rse.2015.12.029
|
[43] |
Florinsky I V, Bliakharskii D P. The 2017 Catastrophic Subsidence in the DÅLK Glacier, East Antarctica: Unmanned Aerial Survey and Terrain Modelling[J]. Remote Sensing Letters, 2019, 10 (4): 333-342 doi: 10.1080/2150704X.2018.1552810
|
[44] |
Dąbski M, Zmarz A, Pabjanek P, et al. UAV-Based Detection and Spatial Analyses of Periglacial Landforms on Demay Point (King George Island, South Shetland Islands, Antarctica)[J]. Geomorphology, 2017, 290: 29-38 doi: 10.1016/j.geomorph.2017.03.033
|
[45] |
Westoby M J, Dunning S A, Woodward J, et al. Sedimentological Characterization of Antarctic Moraines Using UAVs and Structure-from-Motion Photogrammetry[J]. Journal of Glaciology, 2015, 61 (230): 1088-1102 doi: 10.3189/2015JoG15J086
|
[46] |
Westoby M J, Dunning S A, Woodward J, et al. Interannual Surface Evolution of an Antarctic Blue-Ice Moraine Using Multi-temporal DEMs[J]. Earth Surface Dynamics, 2016, 4(2): 515-529 doi: 10.5194/esurf-4-515-2016
|
[47] |
Darren T, Malenovsky Z, Lucieer A, et al. Unmanned Aircraft Systems(UAS)for Non-destructive Health Mapping of Polar Vegetation: Showcase of East Antarctic Moss Beds[C]//12th SCAR Biology Symposium, Leuven, Belgium, 2017
|
[48] |
Goebel M E, Perryman W L, Hinke J T, et al. A Small Unmanned Aerial System for Estimating Abundance and Size of Antarctic Predators[J]. Polar Biology, 2015, 38(5): 619-630 doi: 10.1007/s00300-014-1625-4
|
[49] |
Ratcliffe N, Guihen D, Robst J, et al. A Protocol for the Aerial Survey of Penguin Colonies Using UAVs[J]. Journal of Unmanned Vehicle Systems, 2015, 3(3): 95-101 doi: 10.1139/juvs-2015-0006
|
[50] |
冀明, 张宝钢, 张媛媛, 等. 南极企鹅数量识别及变化趋势分析: 基于无人机航拍的高分辨率影像[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 25-35 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901004.htm
Ji Ming, Zhang Baogang, Zhang Yuanyuan, et al. Sizing and Trend Analysis of Penguin Numbers in Antarctic from High Resolution Photography by Unmanned Aerial Vehicles[J]. Journal of Beijing Normal University(Natural Science), 2019, 55(1): 25-35 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901004.htm
|
[51] |
Rümmler C, Esefeld J, Mustafa O, et al. Impact of Fly-Overs with Different UAV Models on Various Antarctic Species[C]//The 27th International Polar Conference, Rostock, Germany, 2018
|
[52] |
Oosthuizen W C, Krüger L, Jouanneau W, et al. Unmanned Aerial Vehicle (UAV) Survey of the Antarctic Shag (Leucocarbo Bransfieldensis) Breeding Colony at Harmony Point, Nelson Island, South Shetland Islands[J]. Polar Biology, 2020, 43(2): 187-191 doi: 10.1007/s00300-019-02616-y
|
[53] |
International Whaling Commission. Whale Watching-Platforms of Opportunity in New Frontiers[EB/OL]. [2020-01-10]. https://wwhandbook.iwc.int/en/case-studies/whale-watching-in-the-antarctic
|
[54] |
李丙瑞, 秦为稼, 郭井学, 等. 智能机器人技术在南极科学考察事业中的试验应用[J]. 极地研究, 2009, 21(4): 336-343 https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200904011.htm
Li Bingrui, Qin Weijia, Guo Jingxue, et al. The Experiment and Application of Intelligent Robot Techniques in the Antarctic Expedition[J]. Chinese Journal of Polar Research, 2009, 21(4): 336-343 https://www.cnki.com.cn/Article/CJFDTOTAL-JDYZ200904011.htm
|
[55] |
白阳. 中国遥感无人机首航南极中山站[N]. 人民日报, 2014-12-26(3)
|
[56] |
张宝钢, 赵剑, 马驰, 等. 基于无人机遥感技术的南极冰川表面冰坑监测[J]. 北京师范大学学报(自然科学版), 2019, 55(1): 19-24 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901003.htm
Zhang Baogang, Zhao Jian, Ma Chi, et al. UAV Photogrammetric Monitoring of Antarctic Ice Doline Formation[J]. Journal of Beijing Normal University(Natural Science), 2019, 55(1): 19-24 https://www.cnki.com.cn/Article/CJFDTOTAL-BSDZ201901003.htm
|
[57] |
Li T, Liu Y, Li T, et al. Antarctic Surface Ice Velocity Retrieval from MODIS-Based Mosaic of Antarctica(MOA)[J]. Remote Sensing, 2018, 10 (7): 1045-1063 doi: 10.3390/rs10071045
|
[58] |
Ai S T, Wang S S, Li Y S, et al. High -Precision Ice Flow Velocities from Ground Observations on Dalk Glacier, Antarctica[J]. Polar Science, 2019, 19: 13-23 doi: 10.1016/j.polar.2018.09.003
|
[59] |
赵天成. 基于无人机的南极达尔克冰川观测与模拟[D]. 北京: 北京师范大学, 2018
Zhao Tiancheng. Observation and Modification on Dalk Glacier, Antarctica Based on the Unmanned Aerial Vehicle[D]. Beijing: Beijing Normal University, 2018
|
[1] | LIU Wanke, TAO Xianlu, ZHANG Chuanming, YAO Yibin, WANG Fuhong, JIA Hailu, LOU Yidong. Pedestrian Indoor and Outdoor Seamless Positioning Technology and Prototype System Based on Cloud-End Collaboration of Smartphone[J]. Geomatics and Information Science of Wuhan University, 2021, 46(12): 1808-1818. DOI: 10.13203/j.whugis20210310 |
[2] | ZHOU Sha, NIU Jiqiang, XU Feng, PAN Xiaofang, ZHEN Wenjie, QIAN Haoyue. Estimating Gaze Directions for Pedestrian Navigation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 700-705,735. DOI: 10.13203/j.whugis20200465 |
[3] | FANG Hao, SONG Zhangtong, YANG Liu, MA Yitao, QIN Qianqing. Spatial Cognitive Elements of VR Mobile City Navigation Map[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1124-1130. DOI: 10.13203/j.whugis20180066 |
[4] | FANG Zhixiang, XU Hong, SHAW Shih-Lung, LI Qingquan, YUAN Shujun, LI Ling. Pedestrian Navigation Research Trend: From Absolute Space to Relative Space-Based Approach[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2173-2182. DOI: 10.13203/j.whugis20180170 |
[5] | LIU Tao, ZHANG Xing, LI Qingquan, FANG Zhixiang. An Indoor Pedestrian Route Planning Algorithm Based on Landmark Visibility[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 43-48. DOI: 10.13203/j.whugis20150387 |
[6] | ZHANG Qinghua, SUI Lifen, JIA Xiaolin, ZHU Yongxing. SIS Error Statistical Analysis of Beidou Satellite Navigation System[J]. Geomatics and Information Science of Wuhan University, 2014, 39(3): 271-274. DOI: 10.13203/j.whugis20120062 |
[7] | ZHANG Xing, LI Qingquan, FANG Zhixiang, HUANG Ling. Landmark and Branch-based Pedestrian Route Complexity and Selection Algorithm[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1239-1242. |
[8] | FENG Xin, WANG Hua, TAN Shusen. Multipath Performance Analysis for Navigation Signals in Different Pro-correlation Bandwidth and Correlator Spacing[J]. Geomatics and Information Science of Wuhan University, 2011, 36(10): 1191-1194. |
[9] | GAN Yu, SUI Lifen. Real-time Detection and Processing of Noise Correlation in Kinematic Navigation and Positioning[J]. Geomatics and Information Science of Wuhan University, 2011, 36(8): 909-913. |
[10] | ZHANG Xing, LI Qingquan, FANG Zhixiang. An Approach of Generating Landmark Chain for Pedestrian Navigation Applications[J]. Geomatics and Information Science of Wuhan University, 2010, 35(10): 1240-1244. |