WANG Haiqi, CHEN Ran, WEI Shiqing, GUI Li, FEI Tao. Mining Emotional Geography Features Based on Chinese Weibo Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 699-708. DOI: 10.13203/j.whugis20180138
Citation: WANG Haiqi, CHEN Ran, WEI Shiqing, GUI Li, FEI Tao. Mining Emotional Geography Features Based on Chinese Weibo Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 699-708. DOI: 10.13203/j.whugis20180138

Mining Emotional Geography Features Based on Chinese Weibo Data

Funds: 

The National Natural Science Foundation of China 41471322

The National Natural Science Foundation of China 41874146

More Information
  • Author Bio:

    WANG Haiqi, PhD, associate professor, specializes in spatial and spatiotemporal data mining, and GeoAI. wanghaiqi@upc.edu.cn

  • Corresponding author:

    CHEN Ran, master.chenran_upc@163.com

  • Received Date: September 22, 2019
  • Published Date: May 04, 2020
  • Emotion is a kind of geography knowledge existing in space and time, but its acquisition is difficult. Location social networks provide high-quality data sources for emotion measurement. Based on approximately 3.45 million Sina Weibo data with geo-locations, this paper tweeted between September 19-25, 2016 and October 1-7, 2016. Firstly, through text cleaning, Chinese word segmentation and sentiment analysis based on dictionaries and grammar rules, the sentiment tendency of each Weibo text was scored. Then, the emotion values were aggregated at city level and spatial distribution characteristics of city Weibo emotions were detected. Finally, hot-spot and cold-spot spatiotemporal patterns and trends of Weibo emotions were analyzed at hexagon grid level. The research shows that the overall Weibo emotion tendency in China is positive and spatial distribution of individual emotions is random. At city level, the spatial distributions of emotions is extremely uneven and presents sub-regional distribution pattern, which high-high or low-low clusters co-occur with low-high or high-low outliers in local areas and these local differentiations are more significant in September. At hexagon grid level, emotion patterns are opposite between the eastern and western regions of China. The eastern regions mainly present emotional hot-spot patterns, and September and October have different types of hot-spot patterns. In the western regions, emotional cold-spot patterns are prominent, and compared with September, cold-spot patterns of the National Day holiday tend to strengthen. The research reveals the diversities and differences of space-time distribution of Weibo emotions, which has instructive significance for analyzing the happiness of Chinese residents and social and economic development planning.
  • [1]
    Davidson J, Milligan C. Embodying Emotion Sensing Space: Introducing Emotional Geographies[J]. Social & Cultural Geography, 2004, 5(4): 523-532 http://cn.bing.com/academic/profile?id=10f7b722d62ba40d141530c4514229da&encoded=0&v=paper_preview&mkt=zh-cn
    [2]
    朱竑, 高权.西方地理学"情感转向"与情感地理学研究述评[J].地理研究, 2015, 34(7): 1 394-1 406 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201507017

    Zhu Hong, Gao Quan. Review on "Emotional Turn" and Emotional Geographies in Recent Western Geography[J]. Geographical Research, 2015, 34(7): 1 394-1 406 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201507017
    [3]
    Anderson K, Smith S J. Editorial: Emotional Geographies[J]. Transactions of the Institute of British Geographers, 2001, 26(1): 7-10 doi: 10.1111/1475-5661.00002
    [4]
    林群.情感纳入媒介地理学中的考察——基于情感地理的理论视角[D].杭州: 浙江大学, 2011

    Lin Qun. The Study and Measurement of Incorporating Emotion into Media Geography[D]. Hangzhou: Zhejiang University, 2011
    [5]
    侍非, 高才驰, 孟璐, 等.空间叙事方法缘起及在城市研究中的应用[J].国际城市规划, 2014, 29(6): 99-103 http://d.old.wanfangdata.com.cn/Periodical/gwcsgh201406015

    Shi Fei, Gao Caichi, Meng Lu, et al. The Origin of the Method of Spatial Narrative and Its Application in the Urban Research[J]. Urban Planning International, 2014, 29(6): 99-103 http://d.old.wanfangdata.com.cn/Periodical/gwcsgh201406015
    [6]
    蹇嘉, 甄峰, 席广亮, 等.西方情绪地理学研究进展与启示[J].世界地理研究, 2016, 25(2): 123-136 doi: 10.3969/j.issn.1004-9479.2016.02.013

    Jian Jia, Zhen Feng, Xi Guangliang, et al. A Review on Emotional Geography: Its Progress and Enlightenment[J]. World Regional Studies, 2016, 25(2): 123-136 doi: 10.3969/j.issn.1004-9479.2016.02.013
    [7]
    王艳东, 荆彤, 姜伟, 等.利用社交媒体数据模拟城市空气质量趋势面[J].武汉大学学报·信息科学版, 2017, 42(1): 14-20 http://ch.whu.edu.cn/CN/abstract/abstract5629.shtml

    Wang Yandong, Jing Tong, Jiang Wei, et al. Modeling Urban Air Quality Tread Surface Using Social Media Data[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 14-20 http://ch.whu.edu.cn/CN/abstract/abstract5629.shtml
    [8]
    王艳东, 李昊, 王腾, 等.基于社交媒体的突发事件应急信息挖掘与分析[J].武汉大学学报·信息科学版, 2016, 41(3): 290-297 http://ch.whu.edu.cn/CN/abstract/abstract4565.shtml

    Wang Yandong, Li Hao, Wang Teng, et al. The Mining and Analysis of Emergency Information in Sudden Events Based on Social Media[J]. Geomatics and Information Science of Wuhan University, 2016, 41(3): 290-297 http://ch.whu.edu.cn/CN/abstract/abstract4565.shtml
    [9]
    Mitchell L, Frank M R, Harris K D, et al. The Geography of Happiness: Connecting Twitter Sentiment and Expression, Demographics, and Objective Characteristics of Place[J]. Plos One, 2013, 8(5): e64417 doi: 10.1371/journal.pone.0064417
    [10]
    Frank M R, Mitchell L, Dodds P S, et al. Happiness and the Patterns of Life: A Study of Geolocated Tweets[J]. Scientific Reports, 2013, 3: 2 625 doi: 10.1038/srep02625
    [11]
    Yang Wei, Mu Lan, Shen Ye. Effect of Climate and Seasonality on Depressed Mood Among Twitter Users[J]. Applied Geography, 2015, 63: 184-191 doi: 10.1016/j.apgeog.2015.06.017
    [12]
    刘逸, 保继刚, 朱毅玲.基于大数据的旅游目的地情感评价方法探究[J].地理研究, 2017, 36(6): 1 091-1 105 http://d.old.wanfangdata.com.cn/Periodical/dlyj201706008

    Liu Yi, Bao Jigang, Zhu Yiling. Exploring Emotion Methods of Tourism Destination Evaluation: A Big-Data Approach[J]. Geographical Research, 2017, 36(6): 1 091-1 105 http://d.old.wanfangdata.com.cn/Periodical/dlyj201706008
    [13]
    李萍, 陈田, 王甫园, 等.基于文本挖掘的城市旅游社区形象感知研究——以北京市为例[J].地理研究, 2017, 36(6): 1 106-1 122 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201706009

    Li Ping, Chen Tian, Wang Fuyuan, et al. Urban Tourism Community Image Perception and Differentiation Based on Online Comments: A Case Study of Beijing[J]. Geographical Research, 2017, 36(6): 1 106-1 122 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=dlyj201706009
    [14]
    Kiritchenko S, Zhu X, Mohammad S M. Sentiment Analysis of Short Informal Text[J]. Journal of Artificial Intelligence Research, 2014, 50: 723-762 doi: 10.1613/jair.4272
    [15]
    徐琳宏, 林鸿飞, 潘宇, 等.情感词汇本体的构造[J].情报学报, 2008, 27(2): 180-185 doi: 10.3969/j.issn.1000-0135.2008.02.004

    Xu Linhong, Lin Hongfei, Pan Yu, et al. Constructing the Affective Lexicon Ontology[J]. Journal of the China Society for Scientific and Technical Information, 2008, 27(2): 180-185 doi: 10.3969/j.issn.1000-0135.2008.02.004
    [16]
    陈晓东.基于情感词典的中文微博情感倾向分析研究[D].武汉: 华中科技大学, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10487-1013012448.htm

    Chen Xiaodong. Emotional Tendency Analysis of Chinese MicroBlog Based on Sentiment Dictionary[D]. Wuhan: Huazhong University of Science and Technology, 2012 http://cdmd.cnki.com.cn/Article/CDMD-10487-1013012448.htm
    [17]
    杨静, 程昌秀, 李晓岚, 等.网络结构空间格局相似度分析——以1938—2014年北京市骨干交通网络为例[J].武汉大学学报·信息科学版, 2016, 41(12): 1 593-1 598 http://ch.whu.edu.cn/CN/abstract/abstract5610.shtml

    Yang Jing, Cheng Changxiu, Li Xiaolan, et al. A Similarity Evaluation Method on Spatial Patterns of Network Structures: A Case Study About Beijing Traffic-Network Backbones from 1938 to 2014[J]. Geomatics and Information Science of Wuhan University, 2016, 41(12): 1 593-1 598 http://ch.whu.edu.cn/CN/abstract/abstract5610.shtml
    [18]
    贾涛, 李琦, 马楚, 等.武汉市出租车轨迹二氧化碳排放的时空模式分析[J].武汉大学学报·信息科学版, 2019, 44(8): 1 115-1 123 http://ch.whu.edu.cn/CN/abstract/abstract6476.shtml

    Jia Tao, Li Qi, Ma Chu, et al. Computing the CO2 Emissions of Taxi Trajectories and Exploring Their Spatiotemporal Patterns in Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2019, 44(8): 1 115-1 123 http://ch.whu.edu.cn/CN/abstract/abstract6476.shtml
    [19]
    禹文豪, 艾廷华, 杨敏, 等.利用核密度与空间自相关进行城市设施兴趣点分布热点探测[J].武汉大学学报·信息科学版, 2016, 41(2): 221-227 http://ch.whu.edu.cn/CN/abstract/abstract3459.shtml

    Yu Wenhao, Ai Tinghua, Yang Min, et al. Detecting "Hot Spots" of Facility POIs Based on Kernel Density Estimation and Spatial Autocorrelation Technique[J]. Geomatics and Information Science of Wuhan University, 2016, 41(2): 221-227 http://ch.whu.edu.cn/CN/abstract/abstract3459.shtml
    [20]
    Hamed K H.Exact Distribution of the Mann–Kendall Trend Test Statistic for Persistent Data[J]. Journal of Hydrology, 2009, 365(1): 86-94 https://www.sciencedirect.com/science/article/pii/S0022169408005787
  • Cited by

    Periodical cited type(7)

    1. 牟希农. 基于小波域马尔可夫随机场的医学影像图像提取实现研究. 贵州大学学报(自然科学版). 2020(01): 74-77 .
    2. 陈志坤,江俊君,姜鑫维,白露,蔡之华. 一种基于改进双边滤波的鲁棒高光谱遥感图像特征提取方法. 武汉大学学报(信息科学版). 2020(04): 504-510 .
    3. 郭利强,孟庆超. 基于多标签共享子空间学习和内核脊回归的空谱分类算法. 光子学报. 2020(05): 121-133 .
    4. 李玉,甄畅,石雪,赵泉华. 基于熵加权K-means全局信息聚类的高光谱图像分类. 中国图象图形学报. 2019(04): 630-638 .
    5. 曲海成,郭月,王媛媛. 基于优势集聚类和马尔科夫随机场的高光谱图像分类算法. 国土资源遥感. 2019(02): 24-31 .
    6. 职露,余旭初,邹滨,刘冰. 多层级二值模式的高光谱影像空-谱分类. 武汉大学学报(信息科学版). 2019(11): 1659-1666 .
    7. 韦春桃,赵平,肖博林,白风,李小勇,杨晚芸. 结合双树复小波纹理特征和MRF模型的遥感图像分割. 测绘通报. 2019(10): 40-45 .

    Other cited types(8)

Catalog

    Article views (3115) PDF downloads (239) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return