YIN Xiao, CHAI Hongzhou, QI Wenlong, XIAO Guorui. Characteristics of Galileo Calibrated Satellite Antenna Parameter and Their Impacts on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 526-532. DOI: 10.13203/j.whugis20190398
Citation: YIN Xiao, CHAI Hongzhou, QI Wenlong, XIAO Guorui. Characteristics of Galileo Calibrated Satellite Antenna Parameter and Their Impacts on Precise Point Positioning[J]. Geomatics and Information Science of Wuhan University, 2022, 47(4): 526-532. DOI: 10.13203/j.whugis20190398

Characteristics of Galileo Calibrated Satellite Antenna Parameter and Their Impacts on Precise Point Positioning

Funds: 

The National Natural Science Foundation of China 41574010

The National Natural Science Foundation of China 41604013

More Information
  • Author Bio:

    YIN Xiao, PhD, specializes in the GNSS precise orbit determination and positioning.E-mail: yinxiaotongji@163.com

  • Corresponding author:

    CHAI Hongzhou, PhD, professor.E-mail: chaihz1969@163.com

  • Received Date: April 30, 2020
  • Published Date: April 04, 2022
  •   Objectives  The ground calibrated antenna phase center offset (PCO) and phase center variation (PCV) for European global navigation satellite Galileo have been released. Compared with in-orbit estimated PCO and PCV, the calibrated counterparts are frequency-dependent and satellite-dependent. The characteristics of calibrated satellite antenna parameters are needed to be analyzed.
      Methods  Firstly, we compare the antenna parameter of different type satellites, in-orbit validation (IOV) satellite and full operational capability (FOC) satellite. Secondly, we use data from 20 MGEX (multi-GNSS experiment) stations for 15 consecutive days, the effects of calibrated antenna parameters on dual-frequency combined/uncombined precise point positioning (PPP) are studied.
      Results  Experiment results show that the horizontal PCO (h-PCO) are type-dependent, PCV of FOC satellite are more stable than those of IOV satellite and only dependent on the nadir angle. Compared with the positioning results of estimated antenna parameters, the positioning accuracy in horizontal direction is equivalent. The height accuracy based on ionospheric-free combination observation is improved by about 6.3%, those based on dual-frequency uncombined observation is improved by about 11.9%.
      Conclusions  The calibrated antenna parameters based on the individual frequency show better self-consistency in dual-frequency uncombined PPP.
  • [1]
    Schmid R, Rothacher M. Estimation of Elevation-Dependent Satellite Antenna Phase Center Variations of GPS Satellites[J]. Journal of Geodesy, 2003, 77(7): 440-446
    [2]
    Hofmann-Wellenhof B, Lichtenegger H, Wasle E. GNSS-Global Navigation Satellite Systems: GPS, GLONASS, Galileo, and More[M]. New York: Springer, 2008
    [3]
    Montenbruck O, Schmid R, Mercier F, et al. GNSS Satellite Geometry and Attitude Models[J]. Advances in Space Research, 2015, 56(6): 1015-1029 doi: 10.1016/j.asr.2015.06.019
    [4]
    Rizos C, Montenbruck O, Weber R, et al. The IGS MGEX Experiment as a Milestone for a Comprehensive Multi-GNSS Service[C]// The ION Pacific PNT Meeting, Hawaii, USA, 2013
    [5]
    Steigenberger P, Fritsche M, Dach R, et al. Estimation of Satellite Antenna Phase Center Offsets for Galileo[J]. Journal of Geodesy, 2016, 90(8): 773-785 doi: 10.1007/s00190-016-0909-6
    [6]
    Rafael L. Galileo Performance Update[C]// United Nations Workshop on the Applications of GNSS, Falda Del Carmen, Argentina, 2018
    [7]
    Villiger A, Prange L, Dach R, et al. Consistency of Antenna Products in the MGEX Environment[C]// IGS workshop, Wuhan, China, 2018
    [8]
    Li X, Yuan Y, Huang J, et al. Galileo and QZSS Precise Orbit and Clock Determination Using New Satellite Metadata[J]. Journal of Geodesy, 2019, 93(8): 1123-1136 doi: 10.1007/s00190-019-01230-4
    [9]
    Gonzalez F, Sollner M, Schonemen E, et al. Phase Centre Calibration of the Galileo Satellite Navigation Antenna[C]//IGS Workshop, Paris, France, 2017
    [10]
    董大南, 陈俊平, 王解先. GNSS高精度定位原理[M]. 北京: 科学出版社, 2018

    Dong Danan, Chen Junping, Wang Jiexian. GNSS High Precision Positioning Principle[M]. Beijing: Science Press, 2018
    [11]
    Montesano A, Montesano C, Caballero R, et al. Galileo System Navigation Antenna for Global Positioning[C]//The 2nd European Conference on Antennas and Propagation, Edinburgh, UK, 2007
    [12]
    辜声峰. 多频GNSS非差非组合精密数据处理理论及其应用[D]. 武汉: 武汉大学, 2013

    Gu Shengfeng. Research on the Zero-Difference Un-combined Data Processing Model for Multi-Frequency GNSS and Its Applications[D]. Wuhan: Wuhan University, 2013
    [13]
    胡一帆, 张帅. 不同卫星天线参数对BDS定轨定位精度的影响[J]. 测绘学报, 2019, 48(7): 908-918 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201907013.htm

    Hu Yifan, Zhang Shuai. The Impacts of Different Satellite Antenna Parameters on BDS Precise Orbit Determination and Precise Point Positioning Accuracy[J]. Acta Geodaetica et Cartographica Sinica, 2019, 48(7): 908-918 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201907013.htm
    [14]
    陈俊平, 胡一帆, 张帅, 等. 基于不同参考框架的GPS卫星天线校验[J]. 同济大学学报(自然科学版), 2018, 46(10): 1448-1454 doi: 10.11908/j.issn.0253-374x.2018.10.018

    Chen Junping, Hu Yifan, Zhang Shuai, et al. Calibration of GPS Satellite Antenna Based on Different Reference Frames[J]. Journal of Tongji University (Natural Science), 2018, 46(10): 1448-1454 doi: 10.11908/j.issn.0253-374x.2018.10.018
    [15]
    Zhu S Y, Massmann F H, Yu Y, et al. Satellite Antenna Phase Center Offsets and Scale Errors in GPS Solutions[J]. Journal of Geodesy, 2003, 76(11): 668-672
    [16]
    Collilieux X, Schmid R. Evaluation of the ITRF2008 GPS Vertical Velocities Using Satellite Antenna Z-Offsets[J]. GPS Solutions, 2013, 17(2): 237-246 doi: 10.1007/s10291-012-0274-8
    [17]
    Schmid R, Dach R, Collilieux X, et al. Absolute IGS Antenna Phase Center Model Igs08. atx: Status and Potential Improvements[J]. Journal of Geodesy, 2016, 90(4): 343-364 doi: 10.1007/s00190-015-0876-3
    [18]
    Schmid R, Steigenberger P, Gendt G, et al. Generation of a Consistent Absolute Phase-Center Correction Model for GPS Receiver and Satellite Antennas[J]. Journal of Geodesy, 2007, 81(12): 781-798 doi: 10.1007/s00190-007-0148-y
    [19]
    马洋, 欧吉坤, 袁运斌, 等. 导航卫星天线相位中心变化估计及对LEO精密定轨影响[J]. 武汉大学学报·信息科学版, 2015, 40(7): 894-900 doi: 10.13203/j.whugis20130626

    Ma Yang, Jikun Ou, Yuan Yunbin, et al. Estimation of GPS Antenna Phase Center Variation and Its Effect on Precise Orbit Determination of LEOs[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 894-900 doi: 10.13203/j.whugis20130626
  • Related Articles

    [1]ZHANG Feifei, WANG Hao, ZHANG Yimi, HAN Bo, WANG Wanyin. Accuracy Analysis of Satellite Altimetry Gravity Data in the Western Pacific Area[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 30-41. DOI: 10.13203/j.whugis20220429
    [2]ZHU Yongxing, TAN Shusen, REN Xia, JIA Xiaolin. Accuracy Analysis of GNSS Global Broadcast Ionospheric Model[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 768-775. DOI: 10.13203/j.whugis20180439
    [3]ZHU Yongxing, TAN Shusen, MIN Feng, CUI Xianqiang. IDW Ionospheric TEC Interpolation and Accuracy Analysis Considering Latitude and Longitude Anisotropy[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1605-1612. DOI: 10.13203/j.whugis20180233
    [4]ZHU Mingchen, HU Wusheng, WANG Laishun. Accuracy Test and Analysis for GPT2w Model in China[J]. Geomatics and Information Science of Wuhan University, 2019, 44(9): 1304-1311. DOI: 10.13203/j.whugis20170387
    [5]JIA Jiangang, LUAN Wei, SHEN Wenbin. iGrav-007 SG and Detection of the Spherical Free Oscillation Modes 0Sm[J]. Geomatics and Information Science of Wuhan University, 2015, 40(12): 1683-1689. DOI: 10.13203/j.whugis20140145
    [6]LOU Liangsheng, LIU Siwei, ZHOU Yu. Accuracy Analysis of Airborne InSAR System[J]. Geomatics and Information Science of Wuhan University, 2012, 37(1): 63-67.
    [7]GONG Hao, ZHANG Jingxiong, SHEN Shaohong. Object-Based Correspondence Analysis for Improved Accuracy in Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 544-547.
    [8]LIU Guolin, HAO Xiaoguang, XUE Huaiping, DU Zhixing. Related Analysis of Effecting Factors of Height Measurement Accuracy of InSAR[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 55-58.
    [9]YIN Hui, Spiros D. Pagiatakis. Least Squares Spectral Analysis and Its Application to Superconducting Gravimeter Data Analysis[J]. Geomatics and Information Science of Wuhan University, 2005, 30(7): 613-616.
    [10]Huang Motao, Guan Zheng, Ouyang Yongzhong. Accuracy Analysis and Calculation of 1°×1° Point Masses in the Area of China[J]. Geomatics and Information Science of Wuhan University, 1995, 20(3): 257-262.

Catalog

    Article views (713) PDF downloads (91) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return