Citation: | ZHANG Feifei, WANG Hao, ZHANG Yimi, HAN Bo, WANG Wanyin. Accuracy Analysis of Satellite Altimetry Gravity Data in the Western Pacific Area[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 30-41. DOI: 10.13203/j.whugis20220429 |
Since the 1970s, the advent of satellite altimetry has provided an effective database for determining the marine gravity field, effectively filling the gaps of shipborne gravity data. In recent years, the accuracy of satellite altimetry gravity data has improved significantly with the continuous improvement of satellite altimetry techniques. In order to evaluate the quality of the latest satellite altimetry gravity data in deep sea area, the download satellite altimetry gravity data in versions SS V24.1, SS V29.1, DTU10, DUT15, GETECH are comparative analyzed with the shipborne gravity data with the scale of 1∶200 000 in the Western Pacific Area.
The accuracies of five different versions of satellite altimetry gravity data are externally checked by using shipborne gravity line-type data and the corresponding grid data separately. The correlation coefficient, mean deviation, root mean square error and standard deviation between every satellite altimetry gravity data and the shipborne gravity data are calculated to compare and analyze. Based on comparative analysis results, the linear regression method is used to remove the system deviation between the satellite altimetry gravity data and the shipborne gravity data, and the minimum curvature filtering method is used to suppress the noise in the satellite altimetry gravity data to improve the data accuracy.
The results show that: (1) Five versions of satellite altimetry gravity data are highly linearly correlated with shipborne gravity data, but there are system deviation between them. The accuracies of SS V29.1, V24.1 and DTU15 are high, and the standard deviation between them and shipborne gravity data are 1.51×10-5 m/s2,1.67×10-5 m/s2 and 1.66×10-5 m/s2 respectively, which is better than the comparison results obtained by previous scholars. (2) The linear regression method can help to figure out the relationship between the satellite altimetry gravity data and the shipborne gravity data, which can eliminate system deviation between the satellite altimetry gravity data and shipborne gravity data. After regression calculation, the average difference beteween the satellite altimetry gravity and the shipborne gravity data decreased to 0, and the root mean square error is greatly reduced, ranging from 1.50×10-5 m/s2 to 2.20×10-5 m/s2.(3) The minimum curvature filtering method can effectively suppress the noise of shipborne gravity data and altimetry gravity data, and make the distribution features of satellite altimetry gravity data more clear and improve the accuracy of satellite altimetry gravity data . After noise suppression, the root mean square error and standard deviation are equal, ranging from 0.97×10-5 m/s2 to 1.48×10-5 m/s2, among which the standard deviation between SS V29.1 and shipborne gravity data is the smallest,0.97×10-5 m/s2.
According to the comparative analysis, the accuracy of the latest five versions of satellite altimetry gravity data are better than their former versions and can meet the needs of marine gravity research on scales around 1∶500 000 to 1∶1 000 000. The linear regression method and minimum curvature filtering method can be used efficiently and easily in improving the accuracy analysis of satellite altimetry gravity data in the Western Pacific area, which can lead to better applications of the satellite altimetry gravity data and deserve to be promoted.
[1] |
金翔龙,高金耀. 西太平洋卫星测高重力场与地球动力学特征[J]. 海洋地质与第四纪地质, 2001, 21(1):1-6.
JIN Xianglong,GAO Jinyao. The Satellite Altimetry Gravity Field and the Geodynamic Feature in the West Pacific[J]. Marine Geology & Quaternary Geo‑logy, 2001, 21(1):1-6.
|
[2] |
晁定波, 姚运生, 李建成, 等. 南海海盆测高重力异常特征及构造解释[J]. 武汉大学学报(信息科学版), 2002, 27(4): 343-347.
CHAO Dingbo, YAO Yunsheng, LI Jiancheng, et al. Interpretaion on the Tectonics and Characteristics of Altimeter-Derived Gravity Anomalies in the South China Sea[J]. Geomatics and Information Science of Wuhan University, 2002, 27(4): 343-347.
|
[3] |
戴勤奋,周良勇,魏合龙. 南黄海卫星重力场及构造演化[J]. 海洋地质与第四纪地质, 2002, 22(4):67-71.
DAI Qinfeng,ZHOU Liangyong,WEI Helong.Satellite Gravity Field and Tectonic Evolution of the South Yellow Sea[J]. Marine Geology & Quaternary Geology,2002,22(4):67-71.
|
[4] |
许惠平, 刘万崧, 周云轩, 等. 卫星测高重力资料及其在南海莺-琼盆地中的应用[J]. 吉林大学学报(地球科学版), 2003,33(3):368-371.
XU Huiping, LIU Wansong, ZHOU Yunxuan, et al. Altimetry Gravity and Its Applications in South China Sea[J]. Journal of Jilin University (Earth Science Edition), 2003, 33(3):368-371.
|
[5] |
纪晓琳, 王万银, 杜向东, 等. 利用重磁资料研究西非中南段含盐盆地构造区划[J]. 地球物理学报, 2019,62(4):1502-1514.
JI Xiaolin, WANG Wanyin, DU Xiangdong, et al. Tectonic Division by Gravity and Magnetic Data of Salt-Bearing Basins, South-Central Section of West Africa[J]. Chinese Journal of Geophysics, 2019, 62(4):1502-1514.
|
[6] |
赵齐乐, 施闯, 柳响林, 等. 重力卫星的星载GPS精密定轨[J]. 武汉大学学报(信息科学版), 2008, 33(8): 810-814.
ZHAO Qile, SHI Chuang, LIU Xianglin, et al. Determination of Precise Orbit Using Onboard GPS Data for Gravity Modeling Oriented Satellites[J]. Geomatics and Information Science of Wuhan University, 2008, 33(8): 810-814.
|
[7] |
宁津生, 王正涛, 超能芳. 国际新一代卫星重力探测计划研究现状与进展[J]. 武汉大学学报(信息科学版), 2016, 41(1): 1-8.
NING Jinsheng, WANG Zhengtao, CHAO Nengfang. Research Status and Progress in International Next-Generation Satellite Gravity Measurement Missions[J]. Geomatics and Information Science of Wuhan University, 2016, 41(1): 1-8.
|
[8] |
孙杨, 姜效典, 王燚, 等. 卫星测高反演重力场在西太平洋海域的应用[J]. 中国海洋大学学报(自然科学版), 2017, 47(6):87-94.
SUN Yang, JIANG Xiaodian, WANG Yi, et al. Application of Gravity Inversion from Satellite Altimeter Data in the West Pacific[J]. Periodical of Ocean University of China, 2017, 47(6):87-94.
|
[9] |
罗志才, 钟波, 周浩, 等. 利用卫星重力测量确定地球重力场模型的进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1713-1727.
LUO Zhicai, ZHONG Bo, ZHOU Hao, et al. Progress in Determining the Earth's Gravity Field Model by Satellite Gravimetry[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10):1713-1727.
|
[10] |
SANDWELL D T, SMITH W H F. Marine Gravity Anomaly from Geosat and ERS1 Satellite Altimetry[J]. Journal of Geophysical Research: Solid Earth, 1997, 102(B5):10039-10054.
|
[11] |
SANDWELL D T, SMITH W H F. Retracking ESR-1 Altimeter Waveforms for Optimal Gravity Field Recovery[J].Geophysical Journal International, 2005, 163(1):79-89.
|
[12] |
SANDWELL D T, SMITH W H F. Global Marine Gravity from Retracked Geosat and ERS-1 Altimetry:Ridge Segmentation Versus Spreading Rate[J]. Journal of Geophysical Research: Solid Earth, 2009, 114(B1):B01411.
|
[13] |
SANDWELL D T, GARICIA E, SOOFI K, et al. Toward 1 mGal Global Marine Gravity from CryoSat-2, Envisat, and Jason-1[J]. The Leading Edge, 2013, 32(8):892-899.
|
[14] |
SANDWELL D T, MULLER R D, SMITH W H F, et al. New Global Marine Gravity Model from GryoSat-2 and Jason-1 Reveals Buried Tectonic Structure[J]. Science, 2014, 346(6205):65-67.
|
[15] |
Scripps Institute of Oceanography.Global Gravity (1-minute Grid),2014[EB/OL].(2016-01-01)[2022-01-01].https://topex.ucsd.edu/cgi-bin/get_ data.cgi.
|
[16] |
ANDERSEN O B,KUNDSEN P.The Role of Satellite Altimetry in Gravity Field Modelling in Coastal Areas[J].Physics and Chemistry of the Earth Part A Solid Eaarth and Geodesy, 2000, 25(1):17-24.
|
[17] |
ANDERSEN O B,KNUDSEN P,BERRY P A M. The DNSC08GRA Global Marine Gravity Field from Double Retracked Satellite[J].Journal of Geo‑desy, 2010, 84(3):191-199.
|
[18] |
Space DTU.GRAVSOFT ASCⅡ gzip,2014[EB/OL].(2016-01-01)[2022-01-01].http://www.space. dtu. dk/english/Research/Scientific_data_and_ models/downloaddata.
|
[19] |
FAIRHEAD J D, GREEN C M, ODEGARD M E. Satellite-Derived Gravity Having Animpact on Marine Exploration[J]. The Leading Edge, 2001, 20:873-876.
|
[20] |
杨金玉,田振兴,韩波,等.国内外重力异常编图进展及重力异常计算方法改进[J].地球物理学进展,2015,30(3):1070-1077.
YANG Jinyu, TIAN Zhenxing, HAN Bo, et al. Progress of Gravity Anomaly Calculation, Correction and Map Compilation[J]. Progress in Geophysics, 2015, 30(3):1070-1077.
|
[21] |
张明华, 张家强. 现代卫星测高重力异常分辨能力分析及在海洋资源调查中的应用[J]. 物探与化探, 2005, 29(4):295-298.
ZHANG Minghua, ZHANG Jiaqiang. Resolution of Modern Satellite Altimetric Gravity Anomaly and Its Application to Marine Geological Survey[J]. Geophysical and Geochemical exploration, 2005, 29(4):295-298.
|
[22] |
罗佳, 姜卫平, 汪海洪, 等. 中国区域SST卫星重力场模型精度分析[J]. 武汉大学学报(信息科学版), 2006, 31(3): 199-202.
LUO Jia, JIANG Weiping, WANG Haihong, et al. Precision Analysis of SST Gravity Field Model in China[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3):199-202.
|
[23] |
杨金玉, 张训华, 张菲菲, 等. 应用多种来源重力异常编制中国海陆及邻区空间重力异常图及重力场解读[J]. 地球物理学报, 2014, 57(12):3920-3931.
YANG Jinyu, ZHANG Xunhua, ZHANG Feifei, et al. Preparation of the Free-Air Gravity Anomaly Map in the Land and Seas of China and Adjacent Areas Using Multi-source Gravity Data and Interpretation of the Gravity Field[J]. Chinese Journal of Geophysics, 2014, 57(12):3920-3931.
|
[24] |
范雕, 李姗姗, 孟书宇, 等. 几种卫星测高海洋重力场模型精度比较分析[J]. 海洋测绘, 2021, 41(5):1-5.
FAN Diao, LI Shanshan, MENG Shuyu, et al. Comparing and Analyzing the Accuracy of Several Satellite Altimetry Maring Gravity Field Models[J]. Hydrographic surveying and Charting, 2021, 41(5):1-5.
|
[25] |
王虎彪, 柯小平, 武凛, 等. 西太平洋海域卫星测高重力异常反演与精度评估[J]. 海洋测绘, 2017, 37(6):1-4.
WANG Hubiao, KE Xiaoping, WU Lin, et al. Gravity Anomaly and Its Accuracy Assessment from Multi-source Altimetry Data in the Western Pacific Area[J]. Hydrographic Surveying and Charting, 2017, 37(6):1-4.
|
[26] |
BRIGGS I. Machine Contouring Using Minimum Curvature[J]. Geophysics, 1974, 39(1):39-48.
|
[27] |
SWAIN C J.A Fortran Ⅳ Program for Interpolating Irregularly Spaced Data Using the Difference Equations for Minimum Curvature[J]. Computer and Geoscience, 1976(1): 231-240.
|
[28] |
SMITH W H F, WESSEL P. Gridding with Continuous Curvature Splines in Tension[J].Geophysics, 1990, 55(3):293-305.
|
[29] |
王万银, 邱之云. 一种稳定的位场数据最小曲率网格化方法研究[J]. 地球物理学进展, 2011, 26(6):2003-2010.
WANG Wanyin, QIU Zhiyun. The Research to a Stable Minimum Curvature Gridding Method in Potential Field Data Processing[J].Progress in Geophysics, 2011, 26(6):2003-2010.
|
[30] |
王万银,邱之云,刘金兰,等.位场数据处理中的最小曲率扩边和补空方法研究[J].地球物理学进展,2009, 24(4):1327-1338.
WANG Wanyin, QIU Zhiyun, LIU Jinlan, et al. The Research to the Extending Edge and Interpolation Based on the Minimum Curvature Method in Potential Field Data Processing[J]. Progress in Geophysics, 2009, 24(4):1327-1338.
|
[31] |
MICKUS K L,AIKEN C L V,KENNEDY W D.Regional-Residual Gravity Anomaly Separation Using the Minimum-Curvature Technique[J].Geophysics, 1991, 56(2):279-283.
|
[32] |
纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法研究[J]. 地球物理学报, 2015, 58(3):1042-1058.
JI Xiaolin, WANG Wanyin, QIU Zhiyun. The Research to the Minimum Curvature Technique for Potential Field Data Separation[J]. Chinese Journal of Geophysics, 2015, 58(3):1042-1058.
|
[33] |
纪晓琳, 王万银, 邱之云. 最小曲率位场分离方法参数选择试验研究[J]. 地球物理学进展, 2019, 34(4):1441-1452.
JI Xiaolin, WANG Wanyin, QIU Zhiyun. Parameter Choose Experimental Research to the Minimum Curvature Technique Potential Field Data Separation Method[J]. Progress in Geophysic, 2019, 34(4) : 1441-1452.
|
[34] |
王莉娟. 多源卫星高度计中国近海及其邻域重力异常反演与精度检验[D]. 青岛:中国石油大学, 2012.
WANG Lijuan. The Inversion of the Gravity Anomalies and the Assessment of Its Accuracy Based on Multi-satellite Altimeter Data in China Sea and Its Vicinity [D]. Qingdao: China University of Petroleum, 2012.
|
[35] |
KEATING P, PINET N. Comparison of Surface and Ship Bome Gravity Data with Satellite-Altimeter Gravity Data in Hudson Bay[J]. The Leading Edge, 2013, 32(4):450-458.
|
[36] |
黄谟涛, 邓凯亮, 欧阳永忠, 等. 海空重力测量及应用技术研究若干进展[J]. 武汉大学学报(信息科学版), 2022, 47(10): 1635-1650.
HUANG Motao, DENG Kailiang, OUYANG Yongzhong, et al. Development and Study in Marine and Airborne Gravimetry and Its Application[J]. Geomatics and Information Science of Wuhan University, 2022, 47(10): 1635-1650.
|
[37] |
《数学手册》编写组. 数学手册[M]. 北京:高等教育出版社, 1979.
Writing Group of Mathematical Directory. Mathematical Directory[M]. Beijing: Higher Education Press, 1979.
|
[38] |
於宗俦, 鲁林成. 测量平差基础[M]. 北京:测绘出版社, 1983.
YU Zongchou, LU Lincheng. Foundation of Measurement Adjustment[M]. Beijing: Surveying and Mapping Press, 1983.
|
[39] |
郑德如. 回归分析和相关分析[M]. 上海:上海人民出版社, 1984.
ZHENG Deru. Regression Analysis and Correlation Analysis[M]. Shanghai: Shanghai People’s Publishing House,1984.
|
[40] |
罗孝宽, 郭绍雍. 应用地球物理教程: 重力、磁法
|
[1] | LI Zuo-lin, XIANG Long-gang, YU Lie-bing, WU Hua-yi, GUAN Xue-feng. Distributed Join Query Method for Large-Scale Spatial Data Streams[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230040 |
[2] | WANG Yufeng, WANG Juan. Spatiotemporal Differentiation Structure Evolution of Population and Land in Zhejiang Urban Agglomeration[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 280-286. DOI: 10.13203/j.whugis20200221 |
[3] | ZHANG Lin, LI Xi. Analysis on Disparity of Regional Development in Pakistan Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 269-279. DOI: 10.13203/j.whugis20210057 |
[4] | XU Huimin, HU Shougeng. Chinese City Size Evolution Under Perspective of Nighttime Light Remote Sensing[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 40-49. DOI: 10.13203/j.whugis20190330 |
[5] | DENG Caiqun, LIU Zhaoli. A Two-Dimensional Spatial Distribution Model for the Positioning Random Error of GPS RTK[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7): 1056-1062. DOI: 10.13203/j.whugis20160254 |
[6] | Chen Zhengsheng, Lv Zhiping, Cui Yang, Wang Yupu. Implementation of Distributed Computing with Large-Scale GLASS Data[J]. Geomatics and Information Science of Wuhan University, 2015, 40(3): 384-389. |
[7] | QIN Chengzhi, ZHU Axing, LI Baolin, PEI Tao. Taxonomy of Slope Positions and Quantification of Their Spatial Distribution Information[J]. Geomatics and Information Science of Wuhan University, 2009, 34(3): 374-377. |
[8] | XIAO Liping, MENG Hui, LI Deyi. Approach to Node Ranking in a Netwrok Based on Topology Potential[J]. Geomatics and Information Science of Wuhan University, 2008, 33(4): 379-383. |
[9] | Li Wenlan, James C. M. Li. The Effect Of Grain Size On Fracture Toughness[J]. Geomatics and Information Science of Wuhan University, 1991, 16(2): 79-91. |
[10] | XU Xiaojian, YE Lejia, KANG Zhizhong, JIANG Wenchen, LUAN Dong, ZHANG Dongya. The Identification of Secondary Craters based on the Distribution of Iron Element on Lunar Surface[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20200345 |