SHENG Yuyu, BI Shuoben, FAN Jingjin, NKUNZIMANA Athanase, XU Zhihui. Analyzing Spatiotemporal Patterns of Traffic Hotspots Using Traffic Operation Indicators[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 746-754. DOI: 10.13203/j.whugis20190357
Citation: SHENG Yuyu, BI Shuoben, FAN Jingjin, NKUNZIMANA Athanase, XU Zhihui. Analyzing Spatiotemporal Patterns of Traffic Hotspots Using Traffic Operation Indicators[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 746-754. DOI: 10.13203/j.whugis20190357

Analyzing Spatiotemporal Patterns of Traffic Hotspots Using Traffic Operation Indicators

Funds: 

The National Natural Science Foundation of China 41971340

More Information
  • Author Bio:

    SHENG Yuyu, master, specializes in spatial data mining. E-mail: leonardosid@qq.com

  • Corresponding author:

    BI Shuoben, PhD, professor. E-mail: bishuoben@163.com

  • Received Date: September 17, 2019
  • Published Date: May 04, 2021
  •   Objectives  Based on taxi movement trajectories, urban traffic operating conditions can be analyzed. At present, the relevant research mainly focuses on the investigation of traffic origin and destination points and the extraction of traffic hotspots, but seldom analyzes the interaction between traffic hotspots. We focus on exploring the temporal and spatial patterns of urban traffic hotspots, with the purpose of providing a scientific basis for traffic management departments for traffic management in different periods and sections.
      Methods  We take the main urban city of Nanjing City as the research area, and use taxi GPS data in 2015, 2016, and 2017 for experiments. Firstly, the effective trajectory flow is extracted from the taxi GPS data through the local anomaly test method. Secondly, based on the GeoJSON geocoding to realize map matching, the Pathlet method is used to process the trajectory flow into a sequence which can be optimally solved by dynamic programming. Finally, based on the standard for evaluation of urban traffic operation status, the macroscopic fundamental diagram model is constructed according to the relationship between traffic flow, speed and density in the road network, and the evaluation index is established by combining travel time ratio and the delay time ratio.
      Results  (1) Judging from the average of the traffic operation indicators, the main urban area of Nanjing is the most congested in the morning and evening rush hours, and the traffic is smooth in the early morning hours, and the traffic hotspots are more active on working days than on rest days. (2) Judging from the traffic operation indicators of the nine different nodes, the traffic congestion near the parking lot and office building nodes is relatively increased on weekdays, and the traffic congestion near the nodes of shopping malls and residential quarters is relatively increased on the rest days.(3) Judging from the perspective of spatial distribution of traffic hotspots in five representative periods, traffic hotspots mostly appear near intersections and ramps, and there are more interactions between main roads and express roads, but between townships and village roads and county roads. There is less interaction. (4) Judging from the perspective of the temporal and spatial patterns of traffic hotspots near the school during the morning rush hour, the temporal and spatial interaction characteristics of traffic hotspots are significant in areas with high node coverage, while the spatial distribution characteristics of traffic hotspots change unclearly with time in areas with low node coverage.
      Conclusions  Urban traffic hotspots show significant differences in time and space distribution characteristics, and their spatiotemporal interactions become stronger with time and space aggregation, which has a significant positive correlation.
  • [1]
    吴瑞龙, 朱欣焰, 呙维, 等. 城市道路交通事故时空分布模式分析[J]. 测绘与空间地理信息, 2018, 41(7): 103-106 doi: 10.3969/j.issn.1672-5867.2018.07.028

    Wu Ruilong, Zhu Xinyan, Guo Wei, et al. Spatiotemporal Distribution Patterns of Urban Road Traffic Accidents[J]. Geomatics and Spatial Information Technology, 2018, 41(7): 103-106 doi: 10.3969/j.issn.1672-5867.2018.07.028
    [2]
    邹超, 吴琳, 李笑语, 等. 南京市交通流与NO2、CO时空分布特征关系研究[J]. 环境科学学报, 2017, 37(10): 3 894-3 905 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201710034.htm

    Zou Chao, Wu Lin, Li Xiaoyu, et al. Relationship Between Traffic Flow and Temporal and Spatial Variations of NO2 and CO in Nanjing[J]. Acta Scientiae Circumstantiae, 2017, 37(10): 3 894-3 905 https://www.cnki.com.cn/Article/CJFDTOTAL-HJXX201710034.htm
    [3]
    郑宇. 城市计算概述[J]. 武汉大学学报∙信息科学版, 2015, 40(1): 1-13 http://ch.whu.edu.cn/article/id/3172

    Zheng Yu. Introduction to Urban Computing[J]. Geomatics and Information Science of Wuhan University, 2015, 40(1): 1-13 http://ch.whu.edu.cn/article/id/3172
    [4]
    赵光辉. 我国大数据交通治理的政策研究[J]. 大数据时代, 2018(9): 24-37 https://www.cnki.com.cn/Article/CJFDTOTAL-DSJD201809006.htm

    Zhao Guanghui. A Study on the Transportation Policy of China's Traffic by Big Data Governance[J]. Big Data Time, 2018(9): 24-37 https://www.cnki.com.cn/Article/CJFDTOTAL-DSJD201809006.htm
    [5]
    Jenelius E, Koutsopoulos H N. Travel Time Estimation for Urban Road Networks Using Low Frequency Probe Vehicle Data[J]. Transportation Research Part B: Methodological, 2013, 53: 64-81 doi: 10.1016/j.trb.2013.03.008
    [6]
    Hao Fu, William H K L, Hu Shao, et al. Optimization of Traffic Count Locations for Estimation of Travel Demands with Covariance Between Origin-Destination Flows[J]. Transportation Research Part C, 2019, 108(11): 49-73 http://www.sciencedirect.com/science/article/pii/S0968090X19301160
    [7]
    Zhao P, Qin K, Ye X, et al. A Trajectory Clustering Approach Based on Decision Graph and Data Field for Detecting Hotspots[J]. International Journal of Geographical Information Science, 2016, 31(7): 1-27 doi: 10.1080/13658816.2016.1213845
    [8]
    朱递, 刘瑜. 一种路网拓扑约束下的增量型地图匹配算法[J]. 武汉大学学报∙信息科学版, 2017, 42(1): 77-83 doi: 10.13203/j.whugis20150016

    Zhu Di, Liu Yu. An Incremental Map-Matching Method Based on Road Network Topology[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 77-83 doi: 10.13203/j.whugis20150016
    [9]
    Zhou Y, Fang Z X, Thill J C, et al. Functionally Critical Locations in an Urban Transportation Network: Identification and Space-Time Analysis Using Taxi Trajectories[J]. Computers, Environment and Urban Systems, 2015, 52: 34-47 doi: 10.1016/j.compenvurbsys.2015.03.001
    [10]
    秦昆, 周勍, 徐源泉, 等. 城市交通热点区域的空间交互网络分析[J]. 地理科学进展, 2017, 36(9): 1 149-1 157 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201709012.htm

    Qin Kun, Zou Qing, Xu Yuanquan, et al. Spatial Interaction Network Analysis of Urban Traffic Hotspots[J]. Progress in Geography, 2017, 36(9): 1 149-1 157 https://www.cnki.com.cn/Article/CJFDTOTAL-DLKJ201709012.htm
    [11]
    Lee J G, Han J W, Li X L. Trajectory Outlier Detection: A Partition-and-Detect Framework[C]//The 24th International Conference on Data Engineering, Cancun, Mexico, 2008
    [12]
    刘良旭, 乐嘉锦, 乔少杰, 等. 基于轨迹点局部异常度的异常点检测算法[J]. 计算机学报, 2011, 34(10): 1 966-1 975 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201110022.htm

    Liu Liangxu, Le Jiajin, Qiao Shaojie. Trajectory Outliers Detection Based on Local Outlying Degree[J]. Chinese Journal of Computers, 2011, 34(10): 1 966-1 975 https://www.cnki.com.cn/Article/CJFDTOTAL-JSJX201110022.htm
    [13]
    Gormley C, Tong Z. Elasticsearch the Definitive Guide: A Distributed Real-Time Search and Analytics Engine[M]. Boston, MA: O'Reilly Media Inc, 2015
    [14]
    韩博洋, 汪兆洋, 金蓓弘. 一种基于轨迹大数据离线挖掘与在线实时监测的出租车异常轨迹检测算法[J]. 中国科学技术大学学报, 2016, 46(3): 247-252 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201603010.htm

    Han Boyang, Wang Zhaoyang, Jin Beihong. An Anomaly Detection Algorithm for Taxis Based on Trajectory Data Mining and Online[J]. Journal of University of Science and Technology of China, 2016, 46(3): 247-252 https://www.cnki.com.cn/Article/CJFDTOTAL-ZKJD201603010.htm
    [15]
    中国国家标准化管理委员会. 城市交通运行状况评价规范: GB/T33171-2016[S]. 北京: 中国标准出版社, 2016

    Standardization Administration. Specification for Urban Traffic Performance Evaluation: GB/T22171-2016[S]. Beijing: Standards Press of China, 2016
    [16]
    Geroliminis N, Daganzo C F. Existence of Urban-Scale Macroscopic Fundamental Diagrams: Some Experimental Findings[J]. Transportation Research Part B: Methodological, 2008, 42(9): 759-777 doi: 10.1016/j.trb.2008.02.002
    [17]
    朱琳. 城市快速路交通态势评估理论与方法研究[D]. 北京: 北京交通大学, 2013

    Zhu Lin. Theory and Method Studies on Traffic Situation Assessment for Urban Expressways[D]. Beijing: Beijing Jiaotong University, 2013
    [18]
    徐婷. 城市交通拥堵分类研究: 以南京市为例[C]// 2018年中国城市交通规划年会, 北京, 2018

    Xu Ting. Research on Classification of Urban Traffic Congestion: Taking Nanjing City as an Example[C]//The 2018 China Urban Transportation Planning Annual Conference, Beijing, 2018
    [19]
    王劲峰, 葛咏, 李连发, 等. 地理学时空数据分析方法[J]. 地理学报, 2014, 69(9): 1 326-1 345 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201409008.htm

    Wang Jinfeng, Ge Yong, Li Lianfa, et al. Spatiotemporal Data Analysis in Geography[J]. Acta Geographica Sinica, 2014, 69(9): 1 326-1 345 https://www.cnki.com.cn/Article/CJFDTOTAL-DLXB201409008.htm
    [20]
    曲昭伟, 王鑫, 宋现敏, 等. 基于出租车GPS大数据的城市热点出行路段识别方法[J]. 交通运输系统工程与信息, 2019, 19(2): 238-246 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902034.htm

    Qu Shaowei, Wang Xin, Song Xianmin, et al. Urban Hotspot Travel Section Identification Method Based on Taxi GPS Large Data[J]. Journal of Transportation Systems Engineering and Information Technology, 2019, 19(2): 238-246 https://www.cnki.com.cn/Article/CJFDTOTAL-YSXT201902034.htm
    [21]
    许俊, 毕硕本, 张悦. 基于PSO-SVM模型的南京市区交叉口交通流分析[J]. 现代电子技术, 2016, 39(17): 128-131 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201617033.htm

    Xu Jun, Bi Shuoben, Zhang Yue. PSO-SVM Model Based Analysis on Traffic Flow of Road Intersections in Nanjing[J]. Modern Electronics Technique, 2016, 39(17): 128-131 https://www.cnki.com.cn/Article/CJFDTOTAL-XDDJ201617033.htm
  • Related Articles

    [1]MENG Yingying, ZHOU Size, NIE Yan, ZENG Huaiwen, YU Jing. Spatial Delimitation of Urban-Rural Fringe Based on POI and Nighttime Light Data: A Case Study of Wuhan City[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 449-461. DOI: 10.13203/j.whugis20220597
    [2]CAO Hanrui, WANG Yan, LI Xi, HU Shensen, QIU Shi, WEI Yingce. Detecting Farmland Fire in VIIRS Night-time Light Images[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230256
    [3]CHENG Gang, LI Yanlin, ZHAO Zongze, YANG Jie, LU Xiaoping, YUAN Dongfang. Spatiotemporal Interpolation Method of NPP/VIIRS Sequence Images Considering Neighbor Relationships[J]. Geomatics and Information Science of Wuhan University, 2022, 47(2): 252-260. DOI: 10.13203/j.whugis20200019
    [4]WU Yizhen, SHI Kaifang, YU Bailang, LI Chuanlong. Analysis of the Impact of Urban Sprawl on Haze Pollution Based on the NPP-VIIRS Nighttime Light Remote Sensing Data[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 777-789. DOI: 10.13203/j.whugis20200455
    [5]WEI Haitao, LI Ke, HE Xiaohui, TIAN Zhihui. Integrating Spatial Relationship into a Matrix Factorization Model for POI Recommendation[J]. Geomatics and Information Science of Wuhan University, 2021, 46(5): 681-690. DOI: 10.13203/j.whugis20200355
    [6]LIU Quanyi, ZHAN Qingming, LI Jiansong, YANG Chen, LIU Wen. Extracting Built-up Areas Using Luojia-1A Nighttime Light Imageries in Wuhan, China[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 30-39. DOI: 10.13203/j.whugis20190376
    [7]LI Wei, CHEN Yufen, LI Meng, QIAN Lingtao, FANG Xiao. Fuzzy Sets and Systems,2000,114(1):1-9A Method of Context-based POI Personalized Recommendation[J]. Geomatics and Information Science of Wuhan University, 2015, 40(6): 829-833. DOI: 10.13203/j.whugis20130657
    [8]ZHANG Yunfei, YANG Bisheng, LUAN Xuechen. Integrating Urban POI and Road Networks Based on Semantic Knowledge[J]. Geomatics and Information Science of Wuhan University, 2013, 38(10): 1229-1233.
    [9]WANG Lunche, GONG Wei, ZHANG Miao, MA Yingying. Dynamic Monitoring of Vegetation NPP in Wuhan Based on MODIS[J]. Geomatics and Information Science of Wuhan University, 2013, 38(5): 548-552.
    [10]YU Changbin, HU Qiao, REN Fu, DU Qingyun. Information Organization Method and Visualization Strategy of POI Based on B/S Structure[J]. Geomatics and Information Science of Wuhan University, 2012, 37(2): 233-236.
  • Cited by

    Periodical cited type(2)

    1. Qianwen ZHANG,Ya XU,Wei CHU,Shupeng LU. Characteristics and geological significance of the stress state of the lithosphere in the Qinghai-Tibetan Plateau and its neighboring areas. Science China Earth Sciences. 2024(06): 1836-1855 .
    2. 张倩文,徐亚,褚伟,路书鹏. 青藏高原及邻区岩石圈应力状态特征及其地质意义. 中国科学:地球科学. 2024(06): 1863-1882 .

    Other cited types(1)

Catalog

    Article views PDF downloads Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return