ZHU Huizhong, LU Yangyang, XU Aigong, LI Jun. A Network Real-Time Kinematic Method for GPS and BDS Double Systems Between Long Range[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 252-261. DOI: 10.13203/j.whugis20190352
Citation: ZHU Huizhong, LU Yangyang, XU Aigong, LI Jun. A Network Real-Time Kinematic Method for GPS and BDS Double Systems Between Long Range[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 252-261. DOI: 10.13203/j.whugis20190352

A Network Real-Time Kinematic Method for GPS and BDS Double Systems Between Long Range

Funds: 

The National Natural Science Foundation of China 42074012

The National Natural Science Foundation of China 42030109

Liaoning Key Research and Development Program 2020JH2/10100044

More Information
  • Author Bio:

    ZHU Huizhong, PhD, associate professor, specializes in GNSS high-precision positioning. E-mail: zhuhuizhong@whu.edu.cn

  • Received Date: May 27, 2020
  • Published Date: February 04, 2021
  • The uncertainty of distance-related error of global navigation satellite system is gradually increasing with the increase of distance between the reference stations and the rover station. Therefore, the dual-systems of global positioning system (GPS) and BeiDou satellite navigation system (BDS) network real-time kinematic (RTK) method was presented to meet the demand of high-precision long range positioning RTK. Firstly, the wide-lane ambiguities were fixed by the multi-frequency observation data of GPS and BDS between long-range reference stations. The satellite clock errors can be eliminated by the double-difference solution model, simultaneously the atmospheric error and satellite orbit errors can be weakened. Then the double-difference carrier phase integer ambiguities can be fixed by the resolution model including atmospheric error and carrier phase ambiguity. The method of classification error corrections between long-range reference stations network was used. The observation errors were classified, according to the characteristics of observation errors between long-range reference station network. The ionosphere errors and non-dispersive errors of the rover station were calculated by using the reference stations' error correction and regional error interpolation. The atmospheric errors and satellite orbit errors of the rover station can be weakened by the method of interpolation. Then the errors of GPS/BDS carrier phase observation of the rover station were removed by the calculation errors. The carrier phase integer ambiguities of the rover station can be fixed by the method of resolution integer ambiguity with multi-frequency carrier phase, and the position of the rover station was obtained by the fixed ambiguities. The algorithm validation was carried out by the data on long-range reference station network. Three long-range reference stations and one rover station were used to test in Central China. The positioning accuracy of centimeter can be obtained by the algorithm of dual-systems of GPS and BDS network RTK. At the same time, single system can also get the centimeter level of position and the GPS is better than BDS. The method of dual-systems of GPS and BDS network RTK can guarantee the positioning accuracy of the rover station. The results of experiment indicate that the GPS/BDS long-range network RTK can be realized and the centimeter level positioning accuracy can be achieved by this algorithm.
  • [1]
    Geng J, Guo J, Chang H, et al.Toward Global Instantaneous Decimeter-level Positioning Using Tightly Coupled Multi-constellation and Multi-frequency GNSS[J].Journal of Geodesy, 2019, 93(7):977-991 doi: 10.1007/s00190-018-1219-y
    [2]
    高星伟, 陈锐志, 赵春梅.网络RTK算法研究与实验[J].武汉大学学报·信息科学版, 2009, 34(11):1 350-1 353 http://ch.whu.edu.cn/article/id/1426

    Gao Xingwei, Chen Ruizhi, Zhao Chunmei.A Network RTK Algorithm and Its Test[J].Geomatics and Information Science of Wuhan University, 2009, 34(11):1 350-1 353 http://ch.whu.edu.cn/article/id/1426
    [3]
    Zou X, Wang Y, Deng C, et al.Instantaneous BDS+GPS Undifferenced NRTK Positioning with Dynamic Atmospheric Constraints[J].GPS Solutions, 2018, 22(1):1-17 doi: 10.1007/s10291-017-0674-x
    [4]
    祝会忠.基于非差误差改正数的长距离单历元GNSS网络RTK算法研究[D].武汉: 武汉大学, 2012

    Zhu Huizhong.The Study of GNSS Network RTK Algorithm Between Long Range at Single Epoch Using Un-difference Error Corrections[D].Wuhan: Wuhan University, 2012
    [5]
    安向东, 陈华, 姜卫平, 等.长基线GLONASS模糊度固定方法及实验分析[J].武汉大学学报·信息科学版, 2019, 44(5):690-698 doi: 10.13203/j.whugis20170091

    An Xiangdong, Chen Hua, Jiang Weiping, et al.GLONASS Ambiguity Resolution Method Based on Long Baselines and Experimental Analysis[J].Geomatics and Information Science of Wuhan University, 2019, 44(5):690-698 doi: 10.13203/j.whugis20170091
    [6]
    易重海, 陈源军.顾及历元间坐标差信息的GPS模糊度快速固定改进方法[J].武汉大学学报·信息科学版, 2019, 44(4):489-494 doi: 10.13203/j.whugis20170157

    Yi Zhonghai, Chen Yuanjun.An Improved GPS Fast Ambiguity Resolution Algorithm with Epoch-Differenced Coordinate Information[J].Geomatics and Information Science of Wuhan University, 2019, 44(4):489-494 doi: 10.13203/j.whugis20170157
    [7]
    祝会忠, 刘经南, 唐卫明, 等.长距离网络RTK参考站间双差模糊度快速解算算法[J].武汉大学学报·信息科学版, 2012, 37(6):688-692 http://ch.whu.edu.cn/article/id/222

    Zhu Huizhong, Liu Jingnan, Tang Weiming, et al.An Algorithm of Instantaneous Double Difference Ambiguity Resolution for Long-Range Reference Stations of Network RTK[J].Geomatics and Information Science of Wuhan University, 2012, 37(6): 688-692 http://ch.whu.edu.cn/article/id/222
    [8]
    张绍成.基于GPS/GLONASS集成的CROS网络大气建模与RTK算法实现[D].武汉: 武汉大学, 2010

    Zhang Shaocheng.The GPS/GLONASS Integrated CORS Network Atmosphere Modeling and RTK Algorithm Implementation[D].Wuhan: Wuhan University, 2010
    [9]
    唐卫明, 刘经南, 施闯, 等.三步法确定网络RTK基准站双差模糊度[J].武汉大学学报·信息科学版, 2007, 32(4):305-308 http://ch.whu.edu.cn/article/id/1875

    Tang Weiming, Liu Jingnan, Shi Chuang, et al.Three Steps Method to Determine Double Difference Ambiguities Resolution of Network RTK Reference Station[J].Geomatics and Information Science of Wuhan University, 2007, 32(4):305-308 http://ch.whu.edu.cn/article/id/1875
    [10]
    Zhang M, Liu H, Bai Z.Fast Ambiguity Resolution for Long-Range Reference Station Networks with Ionospheric Model Constraint Method[J].GPS Solutions, 2017, 21(2):617-626 doi: 10.1007/s10291-016-0551-z
    [11]
    Lou Y, Gong X, Gu S, et al.Assessment of Code Bias Variations of BDS Triple-Frequency Signals and Their Impacts on Ambiguity Resolution for Long Baselines[J].GPS Solutions, 2017, 21(1):177-186 doi: 10.1007/s10291-016-0514-4
    [12]
    Li B, Shen Y, Feng Y, et al.GNSS Ambiguity Resolution with Controllable Failure Rate for Long Baseline Network RTK [J].Journal of Geodesy, 2014, 88(2):99-112 doi: 10.1007/s00190-013-0670-z
    [13]
    高旺, 高成发, 潘树国, 等.基于部分固定策略的多系统长距离基准站间模糊度快速解算[J].武汉大学学报·信息科学版, 2017, 42(4): 558-562 doi: 10.13203/j.whugis20140945

    Gao Wang, Gao Chengfa, Pan Shuguo, et al. Fast Ambiguity Resolution Between GPS/GLONASS/BDS Combined Long-Range Base Stations Based on Partial-Fixing Strategy[J]. Geomatics and Information Science of Wuhan University, 2017, 42(4): 558-562 doi: 10.13203/j.whugis20140945
    [14]
    姚宜斌, 胡明贤, 许超钤.基于DREAMNET的GPS/BDS /GLONASS多系统网络RTK定位性能分析[J].测绘学报, 2016, 45(9):1 009-1 018 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201609002.htm

    Yao Yibin, Hu Mingxian, Xu Chaoqian.Positioning Accuracy Analysis of GPS/BDS/GLONASS Network RTK Based on DREAMNET[J].Acta Geodaetica et Cartographica Sinica, 2016, 45(9):1 009-1 018 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201609002.htm
    [15]
    高扬骏, 吕志伟, 周朋进, 等.北斗中长基线三频模糊度解算的自适应抗差滤波算法[J].测绘学报, 2019, 48(3):295-302 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201903005.htm

    Gao Yangjun, Lü Zhiwei, Zhou Pengjin, et al.Adaptive Robust Filtering Algorithm for BDS Medium and Long Base Line Three Carrier Ambiguity Resolution[J].Acta Geodaetica et Cartographica Sinica, 2019, 48(3):295-302 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201903005.htm
    [16]
    高猛, 徐爱功, 祝会忠, 等.BDS网络RTK参考站三频整周模糊度解算方法[J].测绘学报, 2017, 46(4):442-452 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601009.htm

    Gao Meng, Xu Aigong, Zhu Huizhong, et al.Ambiguity Resolution Method for Three-frequency Whole-Cycle of BDS Network RTK Reference Station [J].Acta Geodaetica et Cartographica Sinica, 2017, 46(4):442-452 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201601009.htm
    [17]
    祝会忠, 李军, 蔚泽然, 等.长距离GPS/BDS参考站网多频载波相位整周模糊度解算方法[J].测绘学报, 2020, 49(3): 300-311 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202003006.htm

    Zhu Huizhong, Li Jun, Yu Zeran, et al.The Algorithm of Multi-frequency Carrier Phase Integer Ambiguity Resolution with GPS/BDS Between Long Range Network RTK Reference Stations[J].Acta Geodaetica et Cartographica Sinica, 2020, 49(3):300-311 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB202003006.htm
    [18]
    Ge M, Gendt G, Rothacher M.Resolution of GPS Carrier-phase Ambiguities in Precise Point Positioning (PPP) with Daily Observations [J].Journal of Geodesy, 2008, 82(7):389-399 doi: 10.1007/s00190-007-0187-4
    [19]
    Yao Y, Sun Z, Xu C, et al.Development and Assessment of the Atmospheric Pressure Vertical Correction Model with ERA-Interim and Radiosonde Data[J].Earth and Space Science, 2018, 5(11): 777-789 doi: 10.1029/2018EA000448
    [20]
    Teunissen P J.A Canonical Theory for Short GPS Baselines Part Ⅱ:The Ambiguity Precision and Correlation[J].Journal of Geodesy, 1997, 71(7):389-401 doi: 10.1007/s001900050107
  • Related Articles

    [1]GAO Yang, SHA Hai, CHU Henglin, WANG Mengli. Non-ideality Characteristic Analysis and Receiver Design Constraints Recommendation for BDS B1C and B2a Signals[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 587-592. DOI: 10.13203/j.whugis20200568
    [2]LI Jianan, LI Yu, ZHAO Quanhua, JIANG Haonan, HONG Yong. SAR Image Absolute Radiometric Calibration Based on RCS Modeling of Communication Tower[J]. Geomatics and Information Science of Wuhan University, 2021, 46(11): 1746-1755. DOI: 10.13203/j.whugis20210052
    [3]XIE Ping, ZHANG Shuangxi, WANG Haihong, WU Tengfei, CAI Jianfeng. Cross Wavelet Analysis on the Influence of the Three Gorges Dam Impounding on the Reservoir Precipitation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(6): 821-829, 907. DOI: 10.13203/j.whugis20180410
    [4]YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
    [5]XU Xiyu, WANG Zhenzhan, XU Ke. Application of Laser Tracking Technology to Absolute Calibration of Space-borne Radar Altimeters[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 103-108. DOI: 10.13203/j.whugis20140542
    [6]WENG Yinkan, LI Song, YANG Jinling, YI Hong, WANG Hong, MA Yue. Fast Solution to the RCS of Corner Reflector for the SAR Radiometric Calibration[J]. Geomatics and Information Science of Wuhan University, 2015, 40(11): 1551-1556. DOI: 10.13203/j.whugis20130613
    [7]LIAO Lu, LI Pingxiang, YANG Jie, CHANG Hong. An Improved Method to SAR Polarimetric Calibration Based on Reciprocity Judgement Using Distributed Target[J]. Geomatics and Information Science of Wuhan University, 2015, 40(8): 1042-1047. DOI: 10.13203/j.whugis20140096
    [8]JIN Taoyong, HU Minzhang, JIANG Tao, ZHANG Shoujian. Cross-Calibration and Errors Analysis of Ionosphere Correction in Satellite Altimetry[J]. Geomatics and Information Science of Wuhan University, 2012, 37(6): 658-661.
    [9]WEN Xingping, HU Guangdao, YANG Xiaofeng. Cross Calibration of CBERS-02 CCD Image Based on the Pseudo-invariant Reflectance Targets[J]. Geomatics and Information Science of Wuhan University, 2009, 34(4): 409-413.
    [10]SUN Zhongmiao, XIA Zheren, LI Yingchun. Cross-Coupling Correction for LaCoste&Romberg Airborne Gravimeter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(10): 883-886.
  • Cited by

    Periodical cited type(6)

    1. 严颂华,梅捷,陈永谦,陈璨. 地基GNSS-R公路边坡形变监测实验及误差分析. 武汉大学学报(信息科学版). 2024(01): 100-108 .
    2. 邓垦,周佩元,杜兰,蔡巍. 多系统单频紧组合GNSS-R测高方法. 武汉大学学报(信息科学版). 2024(01): 146-155 .
    3. 侯金华,贺凯飞,高凡,储倜,吴宇. 岸基BDS-R海面测高及其观测值加权方法. 北京航空航天大学学报. 2024(03): 1015-1026 .
    4. 张云,赵乐久,孟婉婷,秦瑾,盛志超,杨树瑚. 北斗卫星反射信号岸基海面高度反演精度的评估. 北京航空航天大学学报. 2023(05): 999-1008 .
    5. 桑文刚,刘迎春,何秀凤,王昭然. 库区GNSS-R精细化反演水面高度及其验证研究. 全球定位系统. 2022(01): 43-48 .
    6. 邢进,刘思琦,王峰,张国栋,俞永庆,王林峰. 岸基GNSS-R海洋遥感系统设计与实现. 无线电工程. 2021(10): 1104-1109 .

    Other cited types(6)

Catalog

    Article views (1510) PDF downloads (188) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return