YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180
Citation: YANG Jie, CHANG Yonglei, LI Pingxiang, ZHAO Lingli, SHI Lei. Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2023-2029. DOI: 10.13203/j.whugis20180180

Distributed Targets Extraction for SAR Polarimetric Calibration Using Helix Scattering

Funds: 

The National Natural Science Foundation of China 41771377

The National Natural Science Foundation of China 41501382

The National Natural Science Foundation of China 41601355

More Information
  • Author Bio:

    YANG Jie, PhD, professor, specializes in PolSAR image processing, including soil water content inversion, polarization calibration, forest tree high inversion, et al. E-mail:yangj@whu.edu.cn

  • Corresponding author:

    CHANG Yonglei, PhD candidate. E-mail:changyonglei@whu.edu.cn

  • Received Date: May 14, 2018
  • Published Date: December 04, 2018
  • Polarimetric SAR technology is widely used in remote sensing and earth observation. Before any quantitative research or application are carried out, polarimetric calibration must be applied on the acquired images. The current polarimetric calibration schemes generally use distributed targets to solve crosstalk and cross-polarization channel imbalance errors. Therefore, it is necessary to extract the distributed targets that satisfy certain scattering characteristics before calibration. In this paper, we propose an automatic method of reference samples extraction for polarimetric calibration, by exploiting the polarization and distribution characteristics of helix scattering. According to the polarization target decomposition, we constructe a helix scattering ratio feature, and adaptive threshold segmentation method is also used to extract the reference samples automatically. A C-band airborne polarimetric SAR image from the Institute of Electronics, Chinese Academy of Sciences is tested. The results show that this method can maintain the correctness of polarimetric calibration, and can improve the calibration accuracy comparing with the algorithms based on polarimetric correlation coefficient or scattering power.
  • [1]
    郭华东, 邵芸, 王长林.雷达对地观测理论与应用[M].北京:科学出版社, 2000

    Guo Huadong, Shao Yun, Wang Changlin. Radar Earth Observation Theory and Application[M]. Beijing:Science Press, 2000
    [2]
    Shimada M. Model-Based Polarimetric SAR Calibration Method Using Forest and Surface-Scattering Targets[J].IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(5):1712-1733 doi: 10.1109/TGRS.2010.2090046
    [3]
    Freeman A, Shen Y, Werner C L. Polarimetric SAR Calibration Experiment Using Active Radar Calibrators[J].IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(2):224-240 doi: 10.1109/36.46702
    [4]
    Whitt M W, Ulaby F T, Polatin P. A General Polarimetric Radar Calibration Technique[J]. IEEE Transactions on Antennas and Propagation, 1991, 39(1):62-67 doi: 10.1109/8.64436
    [5]
    Chen Jie, Shaun Q, Yin Xunjun. Calibration of Spaceborne Linearly Polarized Low Frequency SAR Using Polarimetric Selective Radar Calibrators[J].Progress in Electromagnetics Research, 2011, 114:89-111 doi: 10.2528/PIER11011809
    [6]
    Touzi R, Hawkins R K, Cote S. High-Precision Assessment and Calibration of Polarimetric RADAR-SAT-2 SAR Using Transponder Measurements[J].IEEE Transactions on Geoscience and Remote Sensing, 2013, 51(1):487-503 doi: 10.1109/TGRS.2012.2201946
    [7]
    Alberto V, Lorenzo I, Davide G, et al. Calibration of SAR Polarimetric Images by Means of a Cova-riance Matching Approach[J].IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(2):674-686 doi: 10.1109/TGRS.2014.2326955
    [8]
    Liao Lu, Yang Jie, Li Pingxiang, et al. Polarimetric Calibration of CASMSAR P-Band Data Affected by Terrain Slopes Using a Dual-Band Data Fusion Technique[J].Remote Sensing, 2015, 7(4):4784-4803 doi: 10.3390/rs70404784
    [9]
    Lei Shi, Yang Jie, Li Pingxiang. Co-polarization Channel Imbalance Determination by the Use of Bare Soil[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 95:53-67 doi: 10.1016/j.isprsjprs.2014.06.007
    [10]
    Zhang H, Lu W, Zhang B, et al. Improvement of Polarimetric SAR Calibration Based on the Ainsworth Algorithm for Chinese Airborne PolSAR Data[J]. IEEE Geoscience and Remote Sensing Letters, 2013, 10(4):898-902 doi: 10.1109/LGRS.2012.2226864
    [11]
    Ainsworth T L, Ferro-Famil L, Lee J S. Orientation Angle Preserving a Posteriori Polarimetric SAR Calibration[J].IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(4):994-1003 doi: 10.1109/TGRS.2005.862508
    [12]
    Quegan S. A Unified Algorithm for Phase and Cross-Talk Calibration of Polarimetric Data-Theory and Observations[J].IEEE Transactions on Geoscience and Remote Sensing, 1994, 32(1):89-99 doi: 10.1109/36.285192
    [13]
    Xing S Q, Dai D H, Liu J, et al. Comment on "Orientation Angle Preserving a Posteriori Polarimetric SAR Calibration"[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(6):2417-2419 doi: 10.1109/TGRS.2012.2188297
    [14]
    Kimura H, Mizuno T, Papathanassiou K P, et al. Improvement of Polarimetric SAR Calibration Based on the Quegan Algorithm[C]. IEEE Geoscience and Remote Sensing Symposium, Anchorage, Alaska, USA, 2004 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1368990
    [15]
    Moriyama T, Shimada M, Watanabe M, et al. The Application of Polarimetric Calibration Using Pola-rimetric Scattering Characteristics of Urban Areas to ALOS PALSAR[C].IEEE International Confe-rence on Geoscience and Remote Sensing Sympo-sium, Denver, Colorado, USA, 2006 http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4241241
    [16]
    Yamaguchi Y, Moriyama T, Ishido M, et al. Four-component Scattering Model for Polarimetric SAR Image Decomposition[J].IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(8):1699-1706 doi: 10.1109/TGRS.2005.852084
    [17]
    Kimura H. Calibration of Polarimetric PALSAR Imagery Affected by Faraday Rotation Using Polarization Orientation[J].IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12):3943-3950 doi: 10.1109/TGRS.2009.2028692
    [18]
    Zyl J V. Calibration of Polarimetric Radar Images Using Only Image Parameters and Trihedral Corner Reflector Responses[J].IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(3):337-348 doi: 10.1109/36.54360
    [19]
    Lee J S, Pottier E. Polarimetric Radar Imaging:From Basics to Applications[M]. Boca Raton:CRC Press, 2009
    [20]
    Chang Y, Yang J, Li P, et al. Polarimetric Calibration and Quality Assessment of the GF-3 Satellite Images[J].Sensors, 2018, 18(2):403-411 doi: 10.3390/s18020403
    [21]
    Otsu N. A Threshold Selection Method from Gray-Level Histograms[J].Automatica, 1975, 11(285-296):23-27 http://jamia.oxfordjournals.org/lookup/external-ref?access_num=10.1109/TSMC.1979.4310076&link_type=DOI
    [22]
    何永红, 朱建军, 靳鹏伟.一种使用剪切波变换的干涉图滤波算法[J].武汉大学学报·信息科学版, 2018, 43(7):1008-1014 http://ch.whu.edu.cn/CN/abstract/abstract6146.shtml

    He Yonghong, Zhu Jianjun, Jin Pengwei. An Interferogram Filtering Algorithm Using Shearlet Transform[J]. Geomatics and Information Science of Wuhan University, 2018, 43(7):1008-1014 http://ch.whu.edu.cn/CN/abstract/abstract6146.shtml
    [23]
    Lee J S. Refined Filtering of Image Noise Using Local Statistics[J].Computer Graphics and Image Processing, 1981, 15(4):380-389 doi: 10.1016/S0146-664X(81)80018-4
    [24]
    常永雷, 杨杰, 李平湘, 等.基于CFAR的高分PolSAR影像桥梁自动识别方法[J].武汉大学学报·信息科学版, 2017, 42(6):762-767 http://ch.whu.edu.cn/CN/abstract/abstract5750.shtml

    Chang Yonglei, Yang Jie, Li Pingxiang, et al. Automatic Bridge Recognition Method in High Re-solution PolSAR Images Based on CFAR Detector[J].Geomatics and Information Science of Wuhan University, 2017, 42(6):762-767 http://ch.whu.edu.cn/CN/abstract/abstract5750.shtml
    [25]
    董银文, 苑秉成, 石钊铭.基于区域特征的航拍图像水上桥梁自动识别[J].武汉大学学报·信息科学版, 2013, 38(9):1073-1077 http://ch.whu.edu.cn/CN/abstract/abstract2748.shtml

    Dong Yinwen, Yuan Bingcheng, Shi Zhaoming. Automatic Recognition of Bridge Above Water in Aerial Images Based on Regional Feature[J].Geomatics and Information Science of Wuhan University, 2013, 38(9):1073-1077 http://ch.whu.edu.cn/CN/abstract/abstract2748.shtml
    [26]
    Chang Y, Yang J, Li P, et al. Sample Extraction Bsaed on Helix Scattering for Polarimetric SAR Ca-libration[J].International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2017, XLII-2/W7:689-692 doi: 10.5194/isprs-archives-XLII-2-W7-689-2017
  • Related Articles

    [1]Chen Xinyang, Long Xiaoxiang, Li Qingpeng, Li Jingmei, Han Qijin, Xu Zhaopeng, Yao Weiyuan. Data Proccing and Accuracy Verification for Laser Altimeter of Terrestrial Ecosystem Carbon Inventory Satellite[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230110
    [2]ZHOU Ping, TANG Xinming, WANG Xia, LIU Changru, WANG Zhenming. Geometric Accuracy Evaluation Model of Domestic Push-Broom Mapping Satellite Image[J]. Geomatics and Information Science of Wuhan University, 2018, 43(11): 1628-1634. DOI: 10.13203/j.whugis20160486
    [3]YAN Wei, LIU Jianjun, REN Xin, WANG Fenfei. Accuracy Analysis of CE-3 Moon-Based Ultraviolet Telescope Geometric Positioning[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 133-137, 166. DOI: 10.13203/j.whugis20150162
    [4]MENG Weican, ZHU Shulong, CAO Wen, CAO Bincai, GAO Xiang. High Accuracy On-Orbit Geometric Calibration of Linear Push-broom Cameras[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1392-1399,1413. DOI: 10.13203/j.whugis20140534
    [5]YIN Chuan, WANG Yanhui. Target Geometry Matching Threshold in Incremental Updatingof Road Networks Based on OSTU[J]. Geomatics and Information Science of Wuhan University, 2014, 39(9): 1061-1067. DOI: 10.13203/j.whugis20130575
    [6]YAN Li, JIANG Yun, WANG Jun. Building of Rigorous Geometric Processing Model Based onLine-of-Sight Vector of ZY-3 Imagery[J]. Geomatics and Information Science of Wuhan University, 2013, 38(12): 1451-1455.
    [7]LIU Liangming, YE Yuanxin, FAN Dengke, XU Qi. Study on Geometric Rectification for FY-2 S-VISSR Data[J]. Geomatics and Information Science of Wuhan University, 2012, 37(4): 384-388.
    [8]WU Fang, ZHU Kunpeng. Geometric Accuracy Assessment of Linear Features' Simplification Algorithms[J]. Geomatics and Information Science of Wuhan University, 2008, 33(6): 600-603.
    [9]Li Deren, Wang Xinhua. Geometric Calibration of CCD Array Camera[J]. Geomatics and Information Science of Wuhan University, 1997, 22(4): 308-313,317.
    [10]Fan Yonghong. Geometric Rectification of SAR Image[J]. Geomatics and Information Science of Wuhan University, 1997, 22(1): 39-41.
  • Cited by

    Periodical cited type(32)

    1. 王蕾,何鑫,廖成. 基于知识库相似检索的自然资源调查监测图斑辅助辨识方法. 测绘通报. 2025(02): 137-142 .
    2. 张秀锦,张秀民. 基于轻便的node.js地图识别模型实现分析. 山东交通科技. 2024(02): 130-132 .
    3. 汤冻,奚晓轶,闫涛. 一种用于电视节目播出异态识别的人工智能模型训练方法. 电视技术. 2023(01): 61-65 .
    4. 梁生珺,于明鑫. 应用于无人机平台的轻量Transformer排水口检测框架. 电子技术与软件工程. 2023(01): 165-168 .
    5. 陶立清,黄国满,杨书成,王童童,盛辉军,范海涛. 一种利用卷积神经网络的干涉图去噪方法. 武汉大学学报(信息科学版). 2023(04): 559-567 .
    6. 桂志鹏,胡晓辉,刘欣婕,凌志鹏,姜屿涵,吴华意. 顾及地理语义的地图检索意图形式化表达与识别. 地球信息科学学报. 2023(06): 1186-1201 .
    7. 李从初,励臣儒,朱佳敏,姚浩立. 基于迁移学习和Xception网络的海雾能见度等级估测研究. 浙江气象. 2023(01): 23-28 .
    8. 田启川,吴施瑶,马英楠. 基于卷积神经网络的光学遥感影像分析综述. 计算机应用与软件. 2023(10): 1-9+45 .
    9. 樊翔宇,张聪,杨柳. 融合梅尔谱和循环残差的小样本音频分类模型. 计算机仿真. 2022(02): 195-202 .
    10. 金海峰,吴楠,张悠然. 智慧家庭中的人体动作识别研究综述. 软件导刊. 2022(04): 240-247 .
    11. 冯新扬,邵超. 跨卷积网络特征融合的SAR图像目标识别. 系统仿真学报. 2021(03): 554-561 .
    12. 任加新,刘万增,李志林,李然,翟曦. 利用卷积神经网络进行“问题地图”智能检测. 武汉大学学报(信息科学版). 2021(04): 570-577 .
    13. 王建华,冉煜琨. 适用于便携式设备的深度神经网络眼动跟踪. 计算机与现代化. 2021(08): 58-63 .
    14. 郑雯,沈琪浩,任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级. 光学学报. 2021(22): 72-83 .
    15. 任福,侯宛玥. 面向机器阅读的地图名称注记类别识别方法. 武汉大学学报(信息科学版). 2020(02): 273-280 .
    16. 吴晓玲,黄金雪,何文海. 基于深度卷积神经网络的塑料垃圾分类研究. 塑料科技. 2020(04): 86-89 .
    17. 叶宇光. 基于深度残差网络的图像识别技术研究. 韶关学院学报. 2020(06): 18-22 .
    18. 王科举,廉小亲,陈彦铭,安飒,龚永罡. 基于深度学习的机械臂视觉系统. 信息技术与信息化. 2020(08): 203-208 .
    19. 侯东阳,武昊,陈军. 时空数据Web搜索的研究进展. 地理信息世界. 2020(04): 1-12+21 .
    20. 刘彩玲,岳荷荷. 基于(2D)~2-PCANet的种子图像识别. 计算机应用与软件. 2020(10): 232-238 .
    21. 谢万里,李宏志,周辉,尹绍武. 基于迁移学习与卷积神经网络的鱼濒死预警系统研究. 中国农机化学报. 2019(02): 186-192 .
    22. 宋益盛,林志杰. 基于迁移学习和数据增强技术的物种识别. 现代计算机. 2019(14): 57-63 .
    23. 李雄,文开福,钟小明,杨辉,秦德浩. 基于深度学习的人脸识别考勤管理系统开发. 实验室研究与探索. 2019(07): 115-118+123 .
    24. 李静,韩震,王文柳,崔艳荣. 基于OverFeat模型的长江口南汇潮滩植被分类. 生态科学. 2019(04): 135-141 .
    25. 江涛,王新杰. 基于卷积神经网络的高分二号影像林分类型分类. 北京林业大学学报. 2019(09): 20-29 .
    26. 呙鹏程,吴礼洋. 融合卷积特征与判别字典学习的低截获概率雷达信号识别. 兵工学报. 2019(09): 1881-1889 .
    27. 刘洋,冯全,王书志. 基于轻量级CNN的植物病害识别方法及移动端应用. 农业工程学报. 2019(17): 194-204 .
    28. 门计林,刘越岩,张斌,周繁. 多结构卷积神经网络特征级联的高分影像土地利用分类. 武汉大学学报(信息科学版). 2019(12): 1841-1848 .
    29. 赵波,廖坤,邓春宇,谈元鹏,曹生现. 基于卷积神经学习的光伏板积灰状态识别与分析. 中国电机工程学报. 2019(23): 6981-6989+7111 .
    30. 尹宗天,谢超逸,刘苏宜,刘新如. 低分辨率图像的细节还原. 软件. 2018(05): 199-202 .
    31. 宋俊芳. 基于BP神经网络的图像分割. 数字通信世界. 2018(03): 66+170 .
    32. 朱祺夫,赵俊三,陈磊士,李易. 基于深度学习的遥感影像城市建筑用地提取. 软件导刊. 2018(10): 18-21 .

    Other cited types(62)

Catalog

    Article views (1652) PDF downloads (190) Cited by(94)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return