WANG Leyang, JIN Xibo, XU Guangyu. Particle Swarm Optimization Algorithm with Dynamic Inertia Factors for Inversion of Fault Parameters[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 510-519. DOI: 10.13203/j.whugis20190321
Citation: WANG Leyang, JIN Xibo, XU Guangyu. Particle Swarm Optimization Algorithm with Dynamic Inertia Factors for Inversion of Fault Parameters[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 510-519. DOI: 10.13203/j.whugis20190321

Particle Swarm Optimization Algorithm with Dynamic Inertia Factors for Inversion of Fault Parameters

Funds: 

The National Natural Science Foundation of China 41874001

The National Natural Science Foundation of China 41664001

the Natural Science Foundation of Jiangxi Province 20202BABL204070

More Information
  • Author Bio:

    WANG Leyang, PhD, professor, specializes in geodetic inversion and geodetic data processing. E-mail: wleyang@163.com

  • Received Date: August 08, 2020
  • Published Date: April 04, 2021
  •   Objectives  Inversion of seismic fault parameters using geodetic observation data is a hotspot in geodetic inversion, and it is also the focus of studying the mechanism of earthquake occurrence. Aiming at the low accuracy of particle swarm optimization (PSO) currently used in fault parameter inversion, this paper analyzes the nonlinear characteristics of seismic fault parameter inversion and the characteristics of basic PSO. Basic PSO is easy to fall into a local optimal solution in highly nonlinear problems, and the local optimal solution and the global optimal solution may affect each other during the PSO solution process. This paper proposed a new particle swarm algorithm for inversion of fault parameters to solve the local optimization.
      Methods  In this paper, we adopted the strategy of segmentally and dynamically adjusting the parameters, including the inertia factor that affects the particle velocity and the acceleration factors that affect the local and global optimal solutions.
      Results  The proposed algorithm was applied to inverse the fault parameters for the simulation earthquake and the L?Aquila earthquake. The results of the simulation earthquake show that the proposed algorithm is stable, and the inclination and sliding angle obtained by the proposed algorithm are closer to the true value. The results of the L?Aquila earthquake show that the root mean squared error (RMSE) of surface observations and deformation variables obtained by the proposed algorithm is 5.2 mm, which is better than 6.7 mm obtained by multi-peak particle swarm optimization (MPSO).
      Conclusions  The experiment results show that the fault model obtained by the proposed algorithm is more consistent with the true fracture condition, and the proposed algorithm has practical application value.
  • [1]
    张永志. 位错理论及其在大地变形研究中的应用[M]. 西安: 西安交通大学出版社, 2011

    Zhang Yongzhi. Dislocation Theory and Its Application in the Study of Earth Deformation[M]. Xi?an: Xi?an Jiaotong University Press, 2011
    [2]
    Steketee J A. On Volterra's Dislocation in a Semi-Infinite Elastic Medium[J]. Canadian Journal of Physics, 1958, 36(2): 192-205 doi: 10.1139/p58-024
    [3]
    Okada Y. Surface Deformation to Shear and Tensile Faults in a Halfspace[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1 135-1 154 http://www.researchgate.net/publication/308358507_surface_deformation_due_to_shear_and_tensile_faults_in_a_halfspace
    [4]
    Okada Y. Inernal Deformation due to Shear and Tensile Fault in a Half Space[J]. Bulletin of the Seismological Society of America, 1992, 92(2): 1 018-1 040 http://ci.nii.ac.jp/naid/10010574975
    [5]
    冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1 189-1 196 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004008.htm

    Feng Wanpeng, Li Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1 189-1 196 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004008.htm
    [6]
    Wright T J, Lu Z, Wicks C. Source Model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR[J]. Geophysical Research Letters, 2003, 30(18): 381-398 doi: 10.1029/2003GL018014
    [7]
    许才军, 温扬茂. 基于InSAR数据的西藏玛尼Ms 7.9级地震的地壳不均匀性研究[J]. 武汉大学学报·信息科学版, 2008, 33(8): 846-849 http://ch.whu.edu.cn/article/id/1666

    Xu Caijun, Wen Yangmao. Nonhomogeneity of the Crust from Ms 7.9 Manyi (Tibet) Earthquake with InSAR Observation[J]. Geomatics and Information Science of Wunan University, 2008, 33(8): 846-849 http://ch.whu.edu.cn/article/id/1666
    [8]
    Jonsson S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1 377-1 389 doi: 10.1785/0120000922
    [9]
    Pedersen R, Jonsson S, Árnadóttir T, et al. Fault Slip Distribution of 2 June 2000 Mw 6.5 Earthquakes in South Iceland Estimated from Joint Inversion of InSAR and GPS Measurements[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 487-502 doi: 10.1016/S0012-821X(03)00302-9
    [10]
    Walters R J, Elliott J R, D?Agostino N, et al. The 2009 L?Aquila Earthquake (Central Italy): A Source Mechanism and Implications for Seismic Hazard[J]. Geophysical Research Letters, 2009, 36: L17312 doi: 10.1029/2009GL039337
    [11]
    易远元, 王家映. 地球物理资料非线性反演方法讲座(十)——粒子群反演方法[J]. 工程地球物理学报, 2009, 6(4): 385-389 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200904000.htm

    Yi Yuanyuan, Wang Jiaying. Lecture on Non-Linear Inverse Methods in Geophysical Data(10) Particle Swarm Optimization Inversion Method[J]. Chinese Journal of Engineering Geophysics, 2009, 6(4): 385-389 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200904000.htm
    [12]
    Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]// Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995
    [13]
    He S, Prempain E, Wu Q H. An Improved Particle Swarm Optimizer for Mechanical Design Optimization Problems[J]. Engineering Optimization, 2004, 36(5): 585-605 doi: 10.1080/03052150410001704854
    [14]
    Sha D Y, Hsu C Y. A New Particle Swarm Optimization for the Open Shop Scheduling Problem[J]. Computers and Operations Research, 2008, 35(10): 3 243-3 261 doi: 10.1016/j.cor.2007.02.019
    [15]
    Gong M, Cai Q, Chen X, et al. Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 82-97 doi: 10.1109/TEVC.2013.2260862
    [16]
    Chamisi P, Couceiro M S, Martins F M L, et al. Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5): 2 382-2 394 http://ieeexplore.ieee.org/document/6524014/citations
    [17]
    冯万鹏, 李振洪, 李春来. 利用InSAR确定2009年4月6日Mw 6.3拉奎拉(Italy)地震最优震源模型[J]. 地球物理学进展, 2010, 25(5): 1 550-1 559 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201005006.htm

    Feng Wanpeng, Li Zhenhong, Li Chunlai. Optimal Source Parameters of the 6 April 2009 Mw 6.3 L?Aquila, Italy Earthquake from InSAR Observations[J]. Progress in Geophysics, 2010, 25(5): 1 550- 1 559 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201005006.htm
    [18]
    Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]. 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 1999
    [19]
    崔红梅, 朱庆保. 微粒群算法的参数选择及收敛性分析[J]. 计算机工程与应用, 2007, 43(23): 89-91 doi: 10.3321/j.issn:1002-8331.2007.23.028

    Cui Hongmei, Zhu Qingbao. Convergence Analysis and Parameter Selection in Particle Swarm Optimization[J]. Computer Engineering and Applications, 2007, 43(23): 89-91 doi: 10.3321/j.issn:1002-8331.2007.23.028
    [20]
    姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4): 74-80 doi: 10.3969/j.issn.1001-2400.2012.04.014

    Jiang Jianguo, Tian Min, Wang Xiangqian, et al. Adaptive Particle Swarm Optimization via Distur-bing Acceleration Coefficents[J]. Journal of Xidian University (Natural Science), 2012, 39(4): 74-80 doi: 10.3969/j.issn.1001-2400.2012.04.014
    [21]
    Fan H Y. A Modification to Particle Swarm Optimization Algorithm[J]. Engineering Computations, 2002, 19(8): 970-989 doi: 10.1108/02644400210450378
    [22]
    Ratnaweera A, Halgamuge S K, Watson H C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255 doi: 10.1109/TEVC.2004.826071
    [23]
    王晓英, 邢志栋, 黄瑞平. 改进的粒子群优化算法[J]. 计算机应用与软件, 2008, 25(5): 85-86 doi: 10.3969/j.issn.1000-386X.2008.05.034

    Wang Xiaoying, Xing Zhidong, Huang Ruiping. An Improved Particle Swarm Optimization Algorithm[J]. Computer Applications and Software, 2008, 25(5): 85-86 doi: 10.3969/j.issn.1000-386X.2008.05.034
    [24]
    Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington D C, USA, 1999
    [25]
    赵英文. 总体最小二乘精度评定方法研究[D]. 抚州: 东华理工大学, 2017

    Zhao Yingwen. Research on Overall Least Squares Accuracy Assessment Method[D]. Fuzhou: East China University of Technology, 2017
    [26]
    Boncio P, Pizzi A, Brozzetti F, et al. Coseismic Ground Deformation of the 6 April 2009 L?Aquila Earthquake (Central Italy, Mw 6.3)[J]. Geophysical Research Letters, 2010, 37(6): L17307
    [27]
    Cheloni D, D?Agostino N, D?Anastasio E, et al. Coseismic and Initial Pos-Tseismic Slip of the 2009 Mw 6.3 L?Aquila Earthquake, Italy, from GPS Measurements[J]. Geophysical Journal International, 2010, 181(3): 1 539-1 546 http://adsabs.harvard.edu/abs/2009AGUFM.U13C..03C
    [28]
    温扬茂, 何平, 许才军, 等. 联合Envisat和ALOS卫星影像确定L?Aquila地震震源机制[J]. 地球物理学报, 2012, 55(1): 53-65 doi: 10.6038/j.issn.0001-5733.2012.01.006

    Wen Yangmao, He Ping, Xu Caijun, et al. Source Parameters of the 2009 L?Aquila Earthquake, Italy from Envisat and ALOS Satellite SAR Images[J]. Chinese Journal of Geophysics, 2012, 55(1): 53-65 doi: 10.6038/j.issn.0001-5733.2012.01.006
    [29]
    Wang L Y, Gao H, Feng G C, et al. Source Para-meters and Triggering Links of the Earthquake Sequence in Central Italy from 2009 to 2016 Analyzed with GPS and InSAR Data[J]. Tectonophysics, 2018, 744: 285-295 doi: 10.1016/j.tecto.2018.07.013
    [30]
    Anzidei M, Boschi E, Cannelli V, et al. Coseismic Deformation of the Destructive April 6, 2009 L?Aquila Earthquake (Central Italy) from GPS Data[J]. Geophysical Research Letters, 2009, 36(17): L17307 doi: 10.1029/2009GL039145
    [31]
    Atzori S, Hunstad I, Chini M, et al. Finite Fault Inversion of DInSAR Coseismic Displacement of the 2009 L?Aquila Earthquake (Central Italy)[J]. Geophysical Research Letters, 2009, 36(15): L15305 doi: 10.1029/2009GL039293/abstract
    [32]
    Wells D L, Coppersmith K J. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Area, and Surface Displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1 002 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974
    [33]
    Hanks T C, Kanamori H. A Moment Magnitude Scale[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B5): 2 348-2 350 doi: 10.1029/JB084iB05p02348
  • Related Articles

    [1]YANG Renfei. Research on Multi-level Classification and Change Detection Using Remote Sensing Images for Urban Wetland[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2105-2105. DOI: 10.13203/j.whugis20230130
    [2]WANG Zhipan, SHEN Yan, WANG Liang, ZHANG Qingling, YOU Shucheng. High-Resolution Remote Sensing Image Building Change Detection Based on One-Class Classifier Framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. DOI: 10.13203/j.whugis20180485
    [3]LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294
    [4]YANG Lamei, JIA Yonghong. A Method for Determining the Natural Boundary of Seasonal Saltwater Lake Wetland with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 419-425. DOI: 10.13203/j.whugis20180207
    [5]LI Peng, LI Dahui, LI Zhenhong, WANG Houjie. Wetland Classification Through Integration of GF-3 SAR and Sentinel-2B Multispectral Data over the Yellow River Delta[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1641-1649. DOI: 10.13203/j.whugis20180258
    [6]FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881. DOI: 10.13203/j.whugis20140291
    [7]CHEN Jianqun, WU Xie, WANG Zhenxing, ZHU Jianjun. Establishment of Fundamental Geographic Information System and Associated Key Technologies for Poyang Lake Wetland[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 888-891.
    [8]GONG Hao, ZHANG Jingxiong, SHEN Shaohong. Object-Based Correspondence Analysis for Improved Accuracy in Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 544-547.
    [9]ZHANG Jianqing, SHE Qiong, PAN Li. Change Detection of Residential Area by Remote Sensing Image Based on LBP/C Texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 7-11.
    [10]ZHANG Xiaodong, LI Deren, GONG Jianya, QIN Qianqing. A Change Detection Method of Integrating Remote Sensing and GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 266-269.
  • Cited by

    Periodical cited type(3)

    1. 钟振,文麒麟,梁金福. 应用重力场模型二阶位系数及新近岁差率约束火星内核大小及密度组成. 物理学报. 2023(02): 386-392 .
    2. 文麒麟,钟振. 应用模拟退火算法估算月核大小及其密度组成. 物理学报. 2023(08): 347-353 .
    3. 魏二虎,任晓斌,刘经南,李连艳,聂桂根,李岩林. 利用VLBI观测量对月球天平动参数解算及着陆器定位和测速的改进. 武汉大学学报(信息科学版). 2022(04): 483-491 .

    Other cited types(1)

Catalog

    Article views (1038) PDF downloads (92) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return