Citation: | WANG Leyang, JIN Xibo, XU Guangyu. Particle Swarm Optimization Algorithm with Dynamic Inertia Factors for Inversion of Fault Parameters[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 510-519. DOI: 10.13203/j.whugis20190321 |
[1] |
张永志. 位错理论及其在大地变形研究中的应用[M]. 西安: 西安交通大学出版社, 2011
Zhang Yongzhi. Dislocation Theory and Its Application in the Study of Earth Deformation[M]. Xi?an: Xi?an Jiaotong University Press, 2011
|
[2] |
Steketee J A. On Volterra's Dislocation in a Semi-Infinite Elastic Medium[J]. Canadian Journal of Physics, 1958, 36(2): 192-205 doi: 10.1139/p58-024
|
[3] |
Okada Y. Surface Deformation to Shear and Tensile Faults in a Halfspace[J]. Bulletin of the Seismological Society of America, 1985, 75(4): 1 135-1 154 http://www.researchgate.net/publication/308358507_surface_deformation_due_to_shear_and_tensile_faults_in_a_halfspace
|
[4] |
Okada Y. Inernal Deformation due to Shear and Tensile Fault in a Half Space[J]. Bulletin of the Seismological Society of America, 1992, 92(2): 1 018-1 040 http://ci.nii.ac.jp/naid/10010574975
|
[5] |
冯万鹏, 李振洪. InSAR资料约束下震源参数的PSO混合算法反演策略[J]. 地球物理学进展, 2010, 25(4): 1 189-1 196 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004008.htm
Feng Wanpeng, Li Zhenhong. A Novel Hybrid PSO/Simplex Algorithm for Determining Earthquake Source Parameters Using InSAR Data[J]. Progress in Geophysics, 2010, 25(4): 1 189-1 196 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201004008.htm
|
[6] |
Wright T J, Lu Z, Wicks C. Source Model for the Mw 6.7, 23 October 2002, Nenana Mountain Earthquake (Alaska) from InSAR[J]. Geophysical Research Letters, 2003, 30(18): 381-398 doi: 10.1029/2003GL018014
|
[7] |
许才军, 温扬茂. 基于InSAR数据的西藏玛尼Ms 7.9级地震的地壳不均匀性研究[J]. 武汉大学学报·信息科学版, 2008, 33(8): 846-849 http://ch.whu.edu.cn/article/id/1666
Xu Caijun, Wen Yangmao. Nonhomogeneity of the Crust from Ms 7.9 Manyi (Tibet) Earthquake with InSAR Observation[J]. Geomatics and Information Science of Wunan University, 2008, 33(8): 846-849 http://ch.whu.edu.cn/article/id/1666
|
[8] |
Jonsson S. Fault Slip Distribution of the 1999 Mw 7.1 Hector Mine, California, Earthquake, Estimated from Satellite Radar and GPS Measurements[J]. Bulletin of the Seismological Society of America, 2002, 92(4): 1 377-1 389 doi: 10.1785/0120000922
|
[9] |
Pedersen R, Jonsson S, Árnadóttir T, et al. Fault Slip Distribution of 2 June 2000 Mw 6.5 Earthquakes in South Iceland Estimated from Joint Inversion of InSAR and GPS Measurements[J]. Earth and Planetary Science Letters, 2003, 213(3-4): 487-502 doi: 10.1016/S0012-821X(03)00302-9
|
[10] |
Walters R J, Elliott J R, D?Agostino N, et al. The 2009 L?Aquila Earthquake (Central Italy): A Source Mechanism and Implications for Seismic Hazard[J]. Geophysical Research Letters, 2009, 36: L17312 doi: 10.1029/2009GL039337
|
[11] |
易远元, 王家映. 地球物理资料非线性反演方法讲座(十)——粒子群反演方法[J]. 工程地球物理学报, 2009, 6(4): 385-389 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200904000.htm
Yi Yuanyuan, Wang Jiaying. Lecture on Non-Linear Inverse Methods in Geophysical Data(10) Particle Swarm Optimization Inversion Method[J]. Chinese Journal of Engineering Geophysics, 2009, 6(4): 385-389 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDQ200904000.htm
|
[12] |
Eberhart R, Kennedy J. A New Optimizer Using Particle Swarm Theory[C]// Proceedings of the Sixth International Symposium on Micro Machine and Human Science, Nagoya, Japan, 1995
|
[13] |
He S, Prempain E, Wu Q H. An Improved Particle Swarm Optimizer for Mechanical Design Optimization Problems[J]. Engineering Optimization, 2004, 36(5): 585-605 doi: 10.1080/03052150410001704854
|
[14] |
Sha D Y, Hsu C Y. A New Particle Swarm Optimization for the Open Shop Scheduling Problem[J]. Computers and Operations Research, 2008, 35(10): 3 243-3 261 doi: 10.1016/j.cor.2007.02.019
|
[15] |
Gong M, Cai Q, Chen X, et al. Complex Network Clustering by Multiobjective Discrete Particle Swarm Optimization Based on Decomposition[J]. IEEE Transactions on Evolutionary Computation, 2014, 18(1): 82-97 doi: 10.1109/TEVC.2013.2260862
|
[16] |
Chamisi P, Couceiro M S, Martins F M L, et al. Multilevel Image Segmentation Based on Fractional-Order Darwinian Particle Swarm Optimization[J]. IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(5): 2 382-2 394 http://ieeexplore.ieee.org/document/6524014/citations
|
[17] |
冯万鹏, 李振洪, 李春来. 利用InSAR确定2009年4月6日Mw 6.3拉奎拉(Italy)地震最优震源模型[J]. 地球物理学进展, 2010, 25(5): 1 550-1 559 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201005006.htm
Feng Wanpeng, Li Zhenhong, Li Chunlai. Optimal Source Parameters of the 6 April 2009 Mw 6.3 L?Aquila, Italy Earthquake from InSAR Observations[J]. Progress in Geophysics, 2010, 25(5): 1 550- 1 559 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201005006.htm
|
[18] |
Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]. 1998 IEEE International Conference on Evolutionary Computation, Anchorage, AK, USA, 1999
|
[19] |
崔红梅, 朱庆保. 微粒群算法的参数选择及收敛性分析[J]. 计算机工程与应用, 2007, 43(23): 89-91 doi: 10.3321/j.issn:1002-8331.2007.23.028
Cui Hongmei, Zhu Qingbao. Convergence Analysis and Parameter Selection in Particle Swarm Optimization[J]. Computer Engineering and Applications, 2007, 43(23): 89-91 doi: 10.3321/j.issn:1002-8331.2007.23.028
|
[20] |
姜建国, 田旻, 王向前, 等. 采用扰动加速因子的自适应粒子群优化算法[J]. 西安电子科技大学学报(自然科学版), 2012, 39(4): 74-80 doi: 10.3969/j.issn.1001-2400.2012.04.014
Jiang Jianguo, Tian Min, Wang Xiangqian, et al. Adaptive Particle Swarm Optimization via Distur-bing Acceleration Coefficents[J]. Journal of Xidian University (Natural Science), 2012, 39(4): 74-80 doi: 10.3969/j.issn.1001-2400.2012.04.014
|
[21] |
Fan H Y. A Modification to Particle Swarm Optimization Algorithm[J]. Engineering Computations, 2002, 19(8): 970-989 doi: 10.1108/02644400210450378
|
[22] |
Ratnaweera A, Halgamuge S K, Watson H C. Self-Organizing Hierarchical Particle Swarm Optimizer with Time-Varying Acceleration Coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 240-255 doi: 10.1109/TEVC.2004.826071
|
[23] |
王晓英, 邢志栋, 黄瑞平. 改进的粒子群优化算法[J]. 计算机应用与软件, 2008, 25(5): 85-86 doi: 10.3969/j.issn.1000-386X.2008.05.034
Wang Xiaoying, Xing Zhidong, Huang Ruiping. An Improved Particle Swarm Optimization Algorithm[J]. Computer Applications and Software, 2008, 25(5): 85-86 doi: 10.3969/j.issn.1000-386X.2008.05.034
|
[24] |
Clerc M. The Swarm and the Queen: Towards a Deterministic and Adaptive Particle Swarm Optimization[C]//Proceedings of the 1999 Congress on Evolutionary Computation-CEC99, Washington D C, USA, 1999
|
[25] |
赵英文. 总体最小二乘精度评定方法研究[D]. 抚州: 东华理工大学, 2017
Zhao Yingwen. Research on Overall Least Squares Accuracy Assessment Method[D]. Fuzhou: East China University of Technology, 2017
|
[26] |
Boncio P, Pizzi A, Brozzetti F, et al. Coseismic Ground Deformation of the 6 April 2009 L?Aquila Earthquake (Central Italy, Mw 6.3)[J]. Geophysical Research Letters, 2010, 37(6): L17307
|
[27] |
Cheloni D, D?Agostino N, D?Anastasio E, et al. Coseismic and Initial Pos-Tseismic Slip of the 2009 Mw 6.3 L?Aquila Earthquake, Italy, from GPS Measurements[J]. Geophysical Journal International, 2010, 181(3): 1 539-1 546 http://adsabs.harvard.edu/abs/2009AGUFM.U13C..03C
|
[28] |
温扬茂, 何平, 许才军, 等. 联合Envisat和ALOS卫星影像确定L?Aquila地震震源机制[J]. 地球物理学报, 2012, 55(1): 53-65 doi: 10.6038/j.issn.0001-5733.2012.01.006
Wen Yangmao, He Ping, Xu Caijun, et al. Source Parameters of the 2009 L?Aquila Earthquake, Italy from Envisat and ALOS Satellite SAR Images[J]. Chinese Journal of Geophysics, 2012, 55(1): 53-65 doi: 10.6038/j.issn.0001-5733.2012.01.006
|
[29] |
Wang L Y, Gao H, Feng G C, et al. Source Para-meters and Triggering Links of the Earthquake Sequence in Central Italy from 2009 to 2016 Analyzed with GPS and InSAR Data[J]. Tectonophysics, 2018, 744: 285-295 doi: 10.1016/j.tecto.2018.07.013
|
[30] |
Anzidei M, Boschi E, Cannelli V, et al. Coseismic Deformation of the Destructive April 6, 2009 L?Aquila Earthquake (Central Italy) from GPS Data[J]. Geophysical Research Letters, 2009, 36(17): L17307 doi: 10.1029/2009GL039145
|
[31] |
Atzori S, Hunstad I, Chini M, et al. Finite Fault Inversion of DInSAR Coseismic Displacement of the 2009 L?Aquila Earthquake (Central Italy)[J]. Geophysical Research Letters, 2009, 36(15): L15305 doi: 10.1029/2009GL039293/abstract
|
[32] |
Wells D L, Coppersmith K J. New Empirical Relationships Among Magnitude, Rupture Length, Rupture Area, and Surface Displacement[J]. Bulletin of the Seismological Society of America, 1994, 84(4): 974-1 002 http://gji.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=ssabull&resid=84/4/974
|
[33] |
Hanks T C, Kanamori H. A Moment Magnitude Scale[J]. Journal of Geophysical Research: Solid Earth, 1979, 84(B5): 2 348-2 350 doi: 10.1029/JB084iB05p02348
|
[1] | YANG Renfei. Research on Multi-level Classification and Change Detection Using Remote Sensing Images for Urban Wetland[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2105-2105. DOI: 10.13203/j.whugis20230130 |
[2] | WANG Zhipan, SHEN Yan, WANG Liang, ZHANG Qingling, YOU Shucheng. High-Resolution Remote Sensing Image Building Change Detection Based on One-Class Classifier Framework[J]. Geomatics and Information Science of Wuhan University, 2020, 45(10): 1610-1618. DOI: 10.13203/j.whugis20180485 |
[3] | LUO Ling, MAO Dehua, ZHANG Bai, WANG Zongming, YANG Guang. Remote Sensing Estimation for Light Use Efficiency of Phragmites australis Based on Landsat OLI over Typical Wetlands[J]. Geomatics and Information Science of Wuhan University, 2020, 45(4): 524-533. DOI: 10.13203/j.whugis20180294 |
[4] | YANG Lamei, JIA Yonghong. A Method for Determining the Natural Boundary of Seasonal Saltwater Lake Wetland with Multi-source Data[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 419-425. DOI: 10.13203/j.whugis20180207 |
[5] | LI Peng, LI Dahui, LI Zhenhong, WANG Houjie. Wetland Classification Through Integration of GF-3 SAR and Sentinel-2B Multispectral Data over the Yellow River Delta[J]. Geomatics and Information Science of Wuhan University, 2019, 44(11): 1641-1649. DOI: 10.13203/j.whugis20180258 |
[6] | FENG Wenqing, ZHANG Yongjun. Object-oriented Change Detection for Remote Sensing Images Based on Fuzzy Comprehensive Evaluation[J]. Geomatics and Information Science of Wuhan University, 2016, 41(7): 875-881. DOI: 10.13203/j.whugis20140291 |
[7] | CHEN Jianqun, WU Xie, WANG Zhenxing, ZHU Jianjun. Establishment of Fundamental Geographic Information System and Associated Key Technologies for Poyang Lake Wetland[J]. Geomatics and Information Science of Wuhan University, 2012, 37(8): 888-891. |
[8] | GONG Hao, ZHANG Jingxiong, SHEN Shaohong. Object-Based Correspondence Analysis for Improved Accuracy in Remote Sensing Change Detection[J]. Geomatics and Information Science of Wuhan University, 2009, 34(5): 544-547. |
[9] | ZHANG Jianqing, SHE Qiong, PAN Li. Change Detection of Residential Area by Remote Sensing Image Based on LBP/C Texture[J]. Geomatics and Information Science of Wuhan University, 2008, 33(1): 7-11. |
[10] | ZHANG Xiaodong, LI Deren, GONG Jianya, QIN Qianqing. A Change Detection Method of Integrating Remote Sensing and GIS[J]. Geomatics and Information Science of Wuhan University, 2006, 31(3): 266-269. |