LI Pengcheng, XU Qing, XING Shuai, LIU Zhiqing, ZHANG Junjun. Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 420-427. DOI: 10.13203/j.whugis20150377
Citation: LI Pengcheng, XU Qing, XING Shuai, LIU Zhiqing, ZHANG Junjun. Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(3): 420-427. DOI: 10.13203/j.whugis20150377

Weighted Curve Fitting Filtering Method Based on Full-Waveform LiDAR Data

Funds: 

The Open Research Fund of State Key Laboratory of Geo-information Engineering SKLGIE2016-M-3-1

More Information
  • Author Bio:

    LI Pengcheng, PhD, lecturer, specializes in digital photogrammetry, airborne LiDAR data processing. E-mail: lpclqq@163.com

  • Received Date: January 06, 2016
  • Published Date: March 04, 2018
  • The important application of full-waveform LiDAR technology is to obtain high-precision DEM by making use of waveform data. The weighted curve fitting filtering method is proposed fusing waveform information. Discrete point cloud and waveform parameters are resolved by using global convergent LM. The waveform information and robust estimation theory are introduced to detect abnormal seed points. Then, the terrain curve is fitted according to waveform parameters. And the self-adaptive height difference threshold is determined in consideration of the window size and mean square error. The waveform data in urban, farmland and mountain areas from "WATER (watershed allied telemetry experimental research)" are selected for experiments. Experimental results prove that compared with traditional method, waveform decomposition results from proposed method are more reliable, the accuracy of point cloud filtering is further improved and the proposed method has highly practical value.
  • [1]
    赖旭东, 秦楠楠, 韩晓爽, 等.一种迭代的小光斑LiDAR波形分解方法[J].红外与毫米波学报, 2013, 32(4):319-324 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh201304007&dbname=CJFD&dbcode=CJFQ

    Lai Xudong, Qin Nannan, Han Xiaoshuang, et al. Iterative Decomposition Method for Small Foot-print LiDAR Waveform[J]. J. Infrared Millim. Waves, 2013, 32(4):319-324 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=hwyh201304007&dbname=CJFD&dbcode=CJFQ
    [2]
    覃驭楚, 李斌, 牛铮, 等.小光斑激光雷达全波形数据递进分解与相对辐射校正[J].中国科学(地球科学), 2011, 41(1):103-109 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201101009&dbname=CJFD&dbcode=CJFQ

    Qin Yuchu, Li Bin, Niu Zheng, et al. Stepwise Decomposition and Relative Radiometric Normalization for Small Footprint LiDAR Waveform[J]. Sci China Earth Sci, 2011, 41(1):103-109 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jdxk201101009&dbname=CJFD&dbcode=CJFQ
    [3]
    Clément M, Frédéric B. Full-Waveform Topographic Lidar:State-of-the-Art[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2009, 64:1-16 https://www.sciencedirect.com/science/article/pii/S0924271608000993
    [4]
    Hofton M, Minster J, Blair J. Decomposition of Laser Altimeter Waveforms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2000, 38(4):1989-1996 doi: 10.1109/36.851780
    [5]
    Chanve A, Mallet C, Bretar F. Processing Full-Waveform Lidar Data:Modelling Raw Signals[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2007, 36(Part 3/W52):102-107 http://www.mendeley.com/catalog/processing-fullwaveform-lidar-data-modelling-raw-signals/
    [6]
    Persson A, Söderman U, Töpel J. Visualization and Analysis of Full-Waveform Airborne Laser Scanner Data[J]. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 2005, 35(Part 3/W19):103-108 http://www.mendeley.com/catalog/visualization-analysis-full-waveform-airborne-laser-scanner-data/
    [7]
    李奇, 马洪超.基于激光雷达波形数据的点云生产[J].测绘学报, 2008, 37(3):349-354 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200803014&dbname=CJFD&dbcode=CJFQ

    Li Qi, Ma Hongchao. The Study of Point-Cloud Production Method Based on Waveform Laser Scanner Data[J]. Acta Geodaetica et Cartographica Sinica, 2008, 37(3):349-354 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200803014&dbname=CJFD&dbcode=CJFQ
    [8]
    Hernandez-Martin S, Wallace A, Gibson G. Bayesian analysis of Lidar Signals with Multiple Returns[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(12):2170-2180 doi: 10.1109/TPAMI.2007.1122
    [9]
    Qi C, Peng G, Dennis B. Filtering Airborne Laser Scanning Data with Morphological Methods[J]. Photogrammetric Engineering and Remote Sensing, 2007, 73(2):175-185 doi: 10.14358/PERS.73.2.175
    [10]
    隋立春, 张熠斌, 柳艳, 等.基于改进的数学形态学算法的LiDAR点云数据滤波[J].测绘学报, 2010, 39(4):390-396 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201004012&dbname=CJFD&dbcode=CJFQ

    Sui Lichun, Zhang Yibin, Liu Yan, et al. Filtering of Airborm LiDAR Point Cloud Data Based on the Adaptive Mathematical Morphology[J]. Acta Geodaetica et Cartographica Sinica, 2010, 39(4):390-396 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb201004012&dbname=CJFD&dbcode=CJFQ
    [11]
    Axelsson P. Dem Generation from Laser Scanner Data Using Adaptive TIN Models[J]. International Archives of Photogrammetry and Remote Sensing, 2000, 33:110-117 http://www.mendeley.com/catalog/readimpo-earlydem-generation-laser-scanner-data-using-adaptive-tin-models/
    [12]
    Kraus K, Pfeifer N. Determination of Terrain Models on Wooded Areas with Aerial Laser Scanner Data[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 1998, 53:193-203 http://citeseer.ist.psu.edu/showciting?cid=1268603
    [13]
    苏伟, 孙中平, 赵冬玲.多级移动曲面拟合LiDAR数据滤波算法[J].遥感学报, 2009, 13(5):833-838 doi: 10.11834/jrs.20090506

    Su Wei, Sun Zhongping, Zhao Dongling, et al. Hierarchical Moving Curved Fitting Filtering Method Based on LiDAR Data[J]. Journal of Remote Sensing, 2009, 13(5):833-838 doi: 10.11834/jrs.20090506
    [14]
    黄先锋, 李卉, 王潇, 等.机载LiDAR数据滤波方法评述[J].测绘学报, 2009, 38(5):466-469 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200905018&dbname=CJFD&dbcode=CJFQ

    Huang Xianfeng, Li Hui, Wang Xiao, et al. Filter Algorithms of Airborne LiDAR Data:Review and Prospects[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38(5):466-469 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb200905018&dbname=CJFD&dbcode=CJFQ
    [15]
    Wagner W, Hollaus M, Briese C. 3D Vegetation Mapping Using Small-Footprint Full-Waveform Airborne Laser Scanner[J]. International Journal of Remote Sensing, 2008, 29(5):1433-1452 doi: 10.1080/01431160701736398
    [16]
    Doneus M, Briese C. Digital Terrain Modeling for Archaeological Interpretation Within Forested Areas Using Full-Waveform Laser scanning[C]. The 7th International Symposium on Virtual Reality, Archaeology and Cultural Heritage, New York, 2006
    [17]
    Mandlburger G, Briese C, Pfeifer N. Progress in Lidar Sensor Technology: Chance and Chanllenge for DTM Generation and Data Administration[C]. The 51th Photogrammetric Week, New York, 2007
    [18]
    Wagner W, Ullrich A, Ducic V. Gaussian Decomposition and Calibration of A Novel Small-Footprint Full-Waveform Digitising Airborne Laser Scanner[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2006, 60(2):100-112 https://www.sciencedirect.com/science/article/pii/S0924271605001024
    [19]
    贺星, 刘永葆, 孙丰瑞.基于改进Levenberg-Marquardt算法的燃气轮机特性拟合优化[J].海军工程大学学报, 2012, 24(4):35-40 doi: 10.7495/j.issn.1009-3486.2012.04.008

    He Xing, Liu Yongbao, Sun Fengrui. Optimal Fitting of Gas Turbine Performance Based on Improved Levenberg-Marquardt Method[J]. Journal of Naval University of Engineering, 2012, 24(4):35-40 doi: 10.7495/j.issn.1009-3486.2012.04.008
    [20]
    卢昊, 庞勇, 徐光彩, 等.机载激光雷达全波形数据与系统点云差异的定量分析[J].武汉大学学报·信息科学版, 2015, 40(5):588-593 http://ch.whu.edu.cn/CN/abstract/abstract3250.shtml

    Lu Hao, Pang Yong, Xu Guangcai, et al. Quantitative Analysis of Differences Between Full Waveform Data and System Point Cloud Data from Airborne LiDAR[J]. Geomatics and Information Science of Wuhan University, 2015, 40(5):588-593 http://ch.whu.edu.cn/CN/abstract/abstract3250.shtml
    [21]
    杨元喜.自适应抗差最小二乘估计[J].测绘学报, 1996, 25(3):206-211 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb603.008&dbname=CJFD&dbcode=CJFQ

    Yang Yuanxi. Adaptively Robust Least Squares Estimation[J]. Acta Geodaetica et Cartographica Sinica, 1996, 25(3):206-211 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=chxb603.008&dbname=CJFD&dbcode=CJFQ
    [22]
    常宜峰, 柴洪洲, 刘军, 等.抗差趋势面探测海洋磁力测量异常数据[J].测绘科学技术学报, 2011, 28(4):254-261 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jfjc201104006&dbname=CJFD&dbcode=CJFQ

    Chang Yifeng, Chai Hongzhou, Liu Jun, et al. Abnormal Data Detection of Marine Geomagnetic Survey in Robust Trend Surface[J]. Journal of Geomatics Science and Technology, 2011, 28(4):254-261 http://kns.cnki.net/KCMS/detail/detail.aspx?filename=jfjc201104006&dbname=CJFD&dbcode=CJFQ
  • Related Articles

    [1]WANG Zhong, PENG Fei, HAN Yuchao, MENG Qingxu, DENG Weiyao. Survey Data Processing Method of Submarine Pressure Resistance Based on Non-uniform Sampling Weighted Least Square Circle Fitting[J]. Geomatics and Information Science of Wuhan University, 2024, 49(6): 970-976. DOI: 10.13203/j.whugis20210675
    [2]MENG Zhili, XU Jingzhong. A Lateral Gaussian Decomposition Method for LiDAR Waveform Data[J]. Geomatics and Information Science of Wuhan University, 2018, 43(1): 81-86, 100. DOI: 10.13203/j.whugis20150725
    [3]LI Guojun, LI Zongchun, SUN Yuanchao, LI Wei, HUANG Zhiyong. Using Delaunay Refinement to Reconstruct Surface from Noisy Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(1): 123-129. DOI: 10.13203/j.whugis20140513
    [4]BAI Shengxiang, ZHENG Chundi, ZHANG Sen. Interferometric Phase Estimation Based on Weighted Joint Covariance Matrix Fitting[J]. Geomatics and Information Science of Wuhan University, 2016, 41(4): 475-481. DOI: 10.13203/j.whugis20140224
    [5]PAN Guorong, GUO Wei, ZHOU Yueyin. A Precise Measurement Fitting Algorithm Based on Priori Error Decomposition Weighting[J]. Geomatics and Information Science of Wuhan University, 2015, 40(10): 1339-1343. DOI: 10.13203/j.whugis20130768
    [6]SHU Chanfang, LI Fei, HAO Weifeng. Geoid/Quasigeoid Fitting Based on Equivalent Point Masses[J]. Geomatics and Information Science of Wuhan University, 2011, 36(2): 231-234.
    [7]GU Chuan, PAN Guorong, SHI Guigang, CHEN Xingquan. Parameter Identification of Surface Fitting Based on Genetic Algorithm[J]. Geomatics and Information Science of Wuhan University, 2009, 34(8): 983-986.
    [8]WANG Jiexian. A Method for Fitting of Conicoid in Industrial Measurement[J]. Geomatics and Information Science of Wuhan University, 2007, 32(1): 47-50.
    [9]ZHANG Mengjun, SHU Hong, LIU Yan, WANG Tao. An Adaptive Thresholding Approach Based on Spatial Curved Surface Fitting[J]. Geomatics and Information Science of Wuhan University, 2006, 31(5): 395-398.
    [10]WANG Xinzhou, TANG Zhong'an, CHEN Zhihui. εm-Band Based on Spline Fitting Function of Anomalous Curves in GIS[J]. Geomatics and Information Science of Wuhan University, 2004, 29(1): 58-62.

Catalog

    Article views (1816) PDF downloads (436) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return