Citation: | LIU Minglei, WEI Shuangfeng, HUANG Shuai, TANG Nian. Indoor Navigation Elements Extraction of Room Fineness Using Refining Space Separator Method[J]. Geomatics and Information Science of Wuhan University, 2021, 46(2): 221-229. DOI: 10.13203/j.whugis20190223 |
[1] |
朱庆, 胡明远, 许伟平, 等.面向火灾动态疏散的三维建筑信息模型[J].武汉大学学报·信息科学版, 2014, 39(7):762-766 http://ch.whu.edu.cn/article/id/3016
Zhu Qing, Hu Mingyuan, Xu Weiping, et al. 3D Building Information Model for Facilitating Dynamic Analysis of Indoor Fire Emergency[J]. Geomatics and Information Science of Wuhan University, 2014, 39(7):762-766 http://ch.whu.edu.cn/article/id/3016
|
[2] |
韩丽娜, 李缘廷.融合地面激光扫描和摄影测量技术的三维重建[J].测绘地理信息, 2015, 40(3):10-12
Han Lina, Li Yuanting. 3D Reconstruction by Combining Terrestrial Laser Scanner Data and Photogrammetric Images[J]. Journal of Geomatics, 2015, 40(3):10-12
|
[3] |
张春森, 张梦辉, 郭丙轩, 等.影像三维重建的网格自适应快速优化[J].武汉大学学报·信息科学版, 2020, 45(3): 411-418 doi: 10.13203/j.whugis20190161
Zhang Chunsen, Zhang Menghui, Guo Bingxuan, et al. Adaptive Fast Mesh Refinement of 3D Reconstruction Based on Image Information[J]. Geomatics and Information Science of Wuhan University, 2020, 45(3): 411-418 doi: 10.13203/j.whugis20190161
|
[4] |
危双丰, 刘明蕾, 赵江洪, 等.利用点云检测室内导航元素的方法综述[J].武汉大学学报·信息科学版, 2018, 43(12): 2 003-2 011 doi: 10.13203/j.whugis20180144
Wei Shuangfeng, Liu Minglei, Zhao Jianghong, et al. A Survey of Methods for Detecting Indoor Navigation Elements from Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2 003-2 011 doi: 10.13203/j.whugis20180144
|
[5] |
Fichtner F W, Diakité A A, Zlatanova S, et al. Semantic Enrichment of Octree Structured Point Clouds for Multi-story 3D Pathfinding[J]. Transactions in GIS, 2018, 22: 233-248 doi: 10.1111/tgis.12308
|
[6] |
Thomson C, Boehm J. Automatic Geometry Generation from Point Clouds for BIMs[J]. Remote Sensing, 2015, 7(9):11 753-11 775 doi: 10.3390/rs70911753
|
[7] |
Zhang J, Duan M, Yan Q, et al. Automatic Vehicle Extraction from Airborne LiDAR Data Using an Object-Based Point Cloud Analysis Method[J]. Remote Sensing, 2014, 6(9):8 405-8 423 doi: 10.3390/rs6098405
|
[8] |
Anagnostopoulos I, Pătrăucean V, Brilakis I, et al. Detection of Walls, Floors, and Ceilings in Point Cloud Data[J]. Construction Research Congress, 2016, DOI: 10.1061/9780784479827.229
|
[9] |
Ochmann S, Vock R, Wessel R, et al. Automatic Generation of Structural Building Descriptions from 3D Point Cloud Scans[C]. 2014 International Conference on Computer Graphics Theory and Applications (GRAPP), Lisbon, Portugal, 2014
|
[10] |
Schnabel R, Wahl R, Klein R. Efficient RANSAC for Point‐Cloud Shape Detection[J]. Computer Graphics Forum, 2007, 26(2):214-226 doi: 10.1111/j.1467-8659.2007.01016.x
|
[11] |
Díaz-Vilariño L, Khoshelham K, Martínez-Sánchez J, et al. 3D Modeling of Building Indoor Spaces and Closed Doors from Imagery and Point Clouds[J]. Sensors, 2015, 15(2):3 491-3 512 doi: 10.3390/s150203491
|
[12] |
Díaz-Vilariño L, Boguslawski P, Khoshelham K, et al. Indoor Navigation from Point Clouds: 3D Modeling and Obstacle Detection[J]. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016, XLI-B4:275-281
|
[13] |
Armeni I, Sener O, Zamir A R, et al. 3D Semantic Parsing of Large-Scale Indoor Spaces[C]. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 2016
|
[14] |
Armeni I, Sener O, Zamir A R, et al. 3D Semantic Parsing of Large-Scale Indoor Spaces Supplementary Material[EB/OL]. http://cvgl.stanford.edu/papers/iro_cvpr16_supp.pdf, 2018
|
[15] |
Oesau S, Lafarge F, Alliez P. Indoor Scene Reconstruction Using Feature Sensitive Primitive Extraction and Graph-cut[J]. ISPRS Journal of Photogrammetry & Remote Sensing, 2014, 90:68-82
|
[16] |
Sanchez V, Zakhor A. Planar 3D Modeling of Building Interiors from Point Cloud Data[C]. IEEE International Conference on Image Processing, Orlando, FL, USA, 2012
|
[17] |
Gurram P, Hu S, Chan A. Uniform Grid Upsampling of 3D LiDAR Point Cloud Data[J]. Proceedings of SPIE-The International Society for Optical Engineering, 2013, DOI: 10.1117/12.2004200
|
[18] |
Grompone V G R, Jakubowicz J, Morel J M, et al. LSD: A Fast Line Segment Detector with a False Detection Control[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2010, 32(4):722-732
|
[19] |
Angelina S, Suresh L P, Veni S H K. Image Segmentation Based on Genetic Algorithm for Region Growth and Region Merging[C]. International Conference on Computing, Electronics and Electrical Technologies (ICCEET), Kumaracoil, India, 2012
|
[20] |
游天, 王光霞, 吕晓华, 等.一种面向室内导航的通行区域模型及其自动提取算法[J].武汉大学学报·信息科学版, 2019, 44(2): 177-184 doi: 10.13203/j.whugis20170056
You Tian, Wang Guangxia, Lü Xiaohua, et al. Traversable Region Model and Its Automatic Extraction Algorithm for Indoor Navigation[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 177-184 doi: 10.13203/j.whugis20170056
|
[1] | LI Dehai, WU Wentan, MA Huilin, BEI Jinzhong, ZHAO Yiyuan. Positioning Performance Analysis of Indoor Networks of Range-Based Reference Stations[J]. Geomatics and Information Science of Wuhan University, 2025, 50(1): 1-10. DOI: 10.13203/j.whugis20220513 |
[2] | CHEN Ruizhi, GUO Guangyi, CHEN Liang, NIU Xiaoguang. Application Status, Development and Future Trend of High-Precision Indoor Navigation and Tracking[J]. Geomatics and Information Science of Wuhan University, 2023, 48(10): 1591-1600. DOI: 10.13203/j.whugis20230212 |
[3] | WU Hui, LIU Zhe, HU Jin. Multi-objective Optimization of RSSI Sensor Deployment Considering Obstacles for Indoor Positioning[J]. Geomatics and Information Science of Wuhan University, 2023, 48(3): 471-479. DOI: 10.13203/j.whugis20200421 |
[4] | YANG Fan, LIU Jing-bin, GONG Xiao-dong, HUANG Ge-ge, LIU De-long, MAO Jing-feng. Mobile Phone-Based Indoor Positioning Method using Adaptive Compressed Sensing for Walking-Surveyed Fingerprinting[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20230241 |
[5] | LIU Jingbin, ZHAO Zhibo, HU Ningsong, HUANG Gege, GONG Xiaodong, YANG Sheng. Summary and Prospect of Indoor High-Precision Positioning Technology[J]. Geomatics and Information Science of Wuhan University, 2022, 47(7): 997-1008. DOI: 10.13203/j.whugis20220029 |
[6] | ZHEN Jie, WU Jianxin, LIU Jiping, XU Shenghua, ZHOU Zhenfa, XIN Haiqiang. A High Accuracy Positioning Method for Single Base Station in Indoor Emergency Environment[J]. Geomatics and Information Science of Wuhan University, 2020, 45(8): 1146-1154. DOI: 10.13203/j.whugis20200128 |
[7] | ZHAO Wangyu, LI Bijun, SHAN Yunxiao, XU Haoda. Vehicle Detection and Tracking Based on Fusion of Millimeter Wave Radar and Monocular Vision[J]. Geomatics and Information Science of Wuhan University, 2019, 44(12): 1832-1840. DOI: 10.13203/j.whugis20180146 |
[8] | CHEN Ruizhi, YE Feng. An Overview of Indoor Positioning Technology Based on Wi-Fi Channel State Information[J]. Geomatics and Information Science of Wuhan University, 2018, 43(12): 2064-2070. DOI: 10.13203/j.whugis20180176 |
[9] | Liu Chunyan, Wang Jian. A Constrained KNN Indoor Positioning Model Based on a Geometric Clustering Fingerprinting Technique[J]. Geomatics and Information Science of Wuhan University, 2014, 39(11): 1287-1292. |
[10] | FAN Lingang, CHEN Xi, CHEN Zezong, JIN Yan. Ocean Breaking Wave Detection with Microwave Doppler Radar[J]. Geomatics and Information Science of Wuhan University, 2013, 38(8): 998-1002. |