LI Zhenhong, SONG Chuang, YU Chen, XIAO Ruya, CHEN Lifu, LUO Hui, DAI Keren, GE Daqing, DING Yi, ZHANG Yuxing, ZHANG Qin. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. DOI: 10.13203/j.whugis20190098
Citation: LI Zhenhong, SONG Chuang, YU Chen, XIAO Ruya, CHEN Lifu, LUO Hui, DAI Keren, GE Daqing, DING Yi, ZHANG Yuxing, ZHANG Qin. Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 967-979. DOI: 10.13203/j.whugis20190098

Application of Satellite Radar Remote Sensing to Landslide Detection and Monitoring: Challenges and Solutions

Funds: 

UK Natural Environment Research Council Projects come30001

UK Natural Environment Research Council Projects NE/K010794/1

UK Natural Environment Research Council Projects NE/N012151/1

European Space Agency Through the ESA-MOST DRAGON-4 Project European Space Agency Through the ESA-MOST DRAGON-4 Project

the National Natural Science Foundation of China 41804005

More Information
  • Author Bio:

    LI Zhenhong, PhD, professor, specializes in imaging geodesy, geohazards, infrastructure stability and precision agriculture. E-mail: Zhenhong.Li@newcastle.ac.uk

  • Received Date: February 14, 2019
  • Published Date: July 04, 2019
  • Satellite radar observations enable us not only to detect landslides with detailed sliding signals over broad spatial extents, but also to track landslide dynamics continuously, which has gradually been recognized by the earth observation and landslide communities. However, there are still several challenges in the landslide detection and monitoring with satellite radar observations due to their inherent limitations such as the phase decorrelation caused by heavy vegetation and/or large gradient surface movements, and the geometric distortion introduced by the side-looking orbit. In this paper, from landslide detection and monitoring perspective, the four major challenges of satellite radar technologies are discussed:①The phase decorrelation caused by heavy vegetation can be weakened by use of synthetic aperture radar (SAR) imagery with a long radar wavelength (e.g. S-band or L-band), a short temporal resolution, and/or a high spatial resolution (e.g. 1 m or even higher), and/or advanced interferometric SAR (InSAR) time series, and the phase decorrelation associated with large deformation gradients can be addressed by SAR offset tracking and range split-spectrum interferometry techniques.②Atmospheric effects represent a big challenge of conventional InSAR for landslide detection and monitoring, especially in mountain areas. The generic atmospheric correction online service (GACOS) which is developed at Newcastle University can be used to reduce atmospheric effects on radar observations and simplify the follow-on time series analysis.③The geometric distortions such as shadows and layovers can be pre-analyzed using an external digital elevation model (DEM) for medium-spatial-resolution SAR data; in contrast, for high-resolution SAR data, a machine learning approach can be used to identify water bodies, shadow and layover areas without a requirement of a high-spatial-resolution DEM.④Residual topographic phase exhibits in areas with high buildings or steep slopes, which could easily lead to phase unwrapping errors; this can be tackled by a baseline linear combination approach. In addition, a framework is proposed to combine satellite radar technologies with other earth observations (e.g. ground-based radar, LiDAR and GNSS) to develop an automated landslide detection and monitoring system. It is expected that this paper will help the earth observation and landslide communities clarify the technical pros and cons of the satellite radar technologies so as to promote them and guide their future development.
  • [1]
    Highland L, Bobrowsky P T. The Landslide Handbook: A Guide to Understanding Landslides: Posted November 2008[EB/OL]. https://pubs.usgs.gov/circ/1325/pdf/C1325_508.pdf, 2008
    [2]
    Hu X, Wang T, Pierson T C, et al. Detecting Seasonal Landslide Movement Within the Cascade Landslide Complex (Washington) Using Time-Series SAR Imagery[J]. Remote Sensing of Environment, 2016, 187: 49-61 doi: 10.1016/j.rse.2016.10.006
    [3]
    Iverson R M. Landslide Triggering by Rain Infiltration[J]. Water Resources Research, 2000, 36(7): 1 897-1 910 doi: 10.1029/2000WR900090
    [4]
    Malamud B D, Turcotte D L, Guzzetti F, et al. Landslides, Earthquakes, and Erosion[J]. Earth and Planetary Science Letters, 2004, 229(1-2): 45-59 doi: 10.1016/j.epsl.2004.10.018
    [5]
    Froude M J, Petley D. Global Fatal Landslide Occurrence from 2004 to 2016[J]. Natural Hazards and Earth System Sciences, 2018, 18: 2 161-2 181 doi: 10.5194/nhess-18-2161-2018
    [6]
    Peyret M, Djamour Y, Rizza M, et al. Monitoring of the Large Slow Kahrod Landslide in Alborz Mountain Range (Iran) by GPS and SAR Interferometry[J]. Engineering Geology, 2008, 100(3-4): 131-141 doi: 10.1016/j.enggeo.2008.02.013
    [7]
    Thiebes B. Landslide Analysis and Early Warning Systems: Local and Regional Case Study in the Swabian Alb, Germany[M]. Berlin, Heidelberg: Springer Science & Business Media, 2012
    [8]
    Stähli M, Sättele M, Huggel C, et al. Monitoring and Prediction in Early Warning Systems for Rapid Mass Movements[J]. Natural Hazards and Earth System Sciences, 2015, 15(4): 905-917 doi: 10.5194/nhess-15-905-2015
    [9]
    Xu Q, Yuan Y, Zeng Y, et al. Some New Pre-warning Criteria for Creep Slope Failure[J]. Science China Technological Sciences, 2011, 54(1): 210-220 doi: 10.1007/s11431-011-4640-5
    [10]
    International Union of Geological Sciences Working Group on Landslides. A Suggested Method for Describing the Rate of Movement of a Landslide[J]. Bulletin of the International Association of Engineering Geology, 1995, 52(1): 75-78 doi: 10.1007/BF02602683
    [11]
    Metternicht G, Hurni L, Gogu R. Remote Sensing of Landslides: An Analysis of the Potential Contribution to Geo-Spatial Systems for Hazard Assessment in Mountainous Environments[J]. Remote Sensing of Environment, 2005, 98(2-3): 284-303 doi: 10.1016/j.rse.2005.08.004
    [12]
    Cruden D M, Varnes D J. Landslides: Investigation and Mitigation. Chapter 3-Landslide Types and Processes[J]. Transportation Research Board Special Report, 1996, 247: 91-105 http://d.old.wanfangdata.com.cn/Periodical/dkxbydz201701024
    [13]
    Society A G. Landslide Risk Management Concepts and Guidelines[J]. Australian Geomechanics, 2000, 35(1): 49-92 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ022410224/
    [14]
    Tazio S, Jan K, Holger F, et al. Satellite SAR Interferometry for the Improved Assessment of the State of Activity of Landslides: A Case Study from the Cordilleras of Peru[J]. Remote Sensing of Environment, 2018, 217: 111-125 doi: 10.1016/j.rse.2018.08.014
    [15]
    Casson B, Delacourt C, Allemand P. Contribution of Multi-temporal Remote Sensing Images to Characterize Landslide Slip Surface-Application to the La Clapière Landslide (France)[J]. Natural Hazards and Earth System Sciences, 2005, 5(3): 425-437 doi: 10.5194/nhess-5-425-2005
    [16]
    Mondini A, Guzzetti F, Reichenbach P, et al. Semi-automatic Recognition and Mapping of Rainfall Induced Shallow Landslides Using Optical Satellite Images[J]. Remote Sensing of Environment, 2011, 115(7): 1 743-1 757 doi: 10.1016/j.rse.2011.03.006
    [17]
    Corominas J, Moya J, Lloret A, et al. Measurement of Landslide Displacements Using a Wire Extensometer[J]. Engineering Geology, 2000, 55(3): 149-166 doi: 10.1016/S0013-7952(99)00086-1
    [18]
    Uhlemann S, Smith A, Chambers J, et al. Assessment of Ground-Based Monitoring Techniques Applied to Landslide Investigations[J]. Geomorphology, 2016, 253: 438-451 doi: 10.1016/j.geomorph.2015.10.027
    [19]
    Martelloni G, Segoni S, Fanti R, et al. Rainfall Thresholds for the Forecasting of Landslide Occurrence at Regional Scale[J]. Landslides, 2012, 9(4): 485-495 doi: 10.1007/s10346-011-0308-2
    [20]
    La Rocca M, Galluzzo D, Saccorotti G, et al. Seismic Signals Associated with Landslides and with a Tsunami at Stromboli Volcano, Italy[J]. Bulletin of the Seismological Society of America, 2004, 94(5): 1 850-1 867 doi: 10.1785/012003238
    [21]
    Artese S, Perrelli M. Monitoring a Landslide with High Accuracy by Total Station: A DTM-Based Model to Correct for the Atmospheric Effects[J]. Geosciences, 2018, 8(2): 46 http://cn.bing.com/academic/profile?id=a5cac492c97112083947869cdff4bf03&encoded=0&v=paper_preview&mkt=zh-cn
    [22]
    Barla M, Antolini F. An Integrated Methodology for Landslides' Early Warning Systems[J]. Landslides, 2016, 13(2): 215-228 doi: 10.1007/s10346-015-0563-8
    [23]
    Casagli N, Catani F, del Ventisette C, et al. Monitoring, Prediction, and Early Warning Using Ground-Based Radar Interferometry[J]. Landslides, 2010, 7(3): 291-301 doi: 10.1007/s10346-010-0215-y
    [24]
    Wang G Q. Kinematics of the Cerca Del Cielo, Puerto Rico Landslide Derived from GPS Observations[J]. Landslides, 2012, 9(1): 117-130 doi: 10.1007/s10346-011-0277-5
    [25]
    Liu P, Li Z, Hoey T, et al. Using Advanced InSAR Time Series Techniques to Monitor Landslide Movements in Badong of the Three Gorges Region, China[J]. International Journal of Applied Earth Observation and Geoinformation, 2013, 21: 253-264 doi: 10.1016/j.jag.2011.10.010
    [26]
    Tomás R, Li Z, Liu P, et al. Spatiotemporal Characteristics of the Huangtupo Landslide in the Three Gorges Region (China) Constrained by Radar Interferometry[J]. Geophysical Journal International, 2014, 197(1): 213-232 doi: 10.1093/gji/ggu017
    [27]
    Dai K, Li Z, Tomás R, et al. Monitoring Activity at the Daguangbao Mega-Landslide (China) Using Sentinel-1 Tops Time Series Interferometry[J]. Remote Sensing of Environment, 2016, 186: 501-513 doi: 10.1016/j.rse.2016.09.009
    [28]
    Dong J, Liao M, Xu Q, et al. Detection and Displacement Characterization of Landslides Using Multi-temporal Satellite SAR Interferometry: A Case Study of Danba County in the Dadu River Basin[J]. Engineering Geology, 2018, 240: 95-109 doi: 10.1016/j.enggeo.2018.04.015
    [29]
    Hilley G E, Bürgmann R, Ferretti A, et al. Dynamics of Slow-Moving Landslides from Permanent Scatterer Analysis[J]. Science, 2004, 304(5 679): 1 952-1 955 doi: 10.1126-science.1098821/
    [30]
    Zhao C, Kang Y, Zhang Q, et al. Landslide Identification and Monitoring Along the Jinsha River Catchment (Wudongde Reservoir Area), China, Using the InSAR Method[J]. Remote Sensing, 2018, 10(7): 993 doi: 10.3390/rs10070993
    [31]
    Ferretti A, Fumagalli A, Novali F, et al. A New Algorithm for Processing Interferometric Data-Stacks: SqueeSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(9): 3 460-3 470 doi: 10.1109/TGRS.2011.2124465
    [32]
    Ferretti A, Prati C, Rocca F. Permanent Scatterers in SAR Interferometry[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(1): 8-20 doi: 10.1109/36.898661
    [33]
    Hooper A. A Multi-temporal InSAR Method Incorporating Both Persistent Scatterer and Small Baseline Approaches[J]. Geophysical Research Letters, 2008, 35(16): L16302 doi: 10.1029/2008GL034654
    [34]
    Hooper A, Zebker H, Segall P, et al. A New Method for Measuring Deformation on Volcanoes and Other Natural Terrains Using InSAR Persistent Scatterers[J]. Geophysical Research Letters, 2004, 31(23): L23611 doi: 10.1029-2004GL021737/
    [35]
    Shi X, Jiang H, Zhang L, et al. Landslide Displacement Monitoring with Split-Bandwidth Interferometry: A Case Study of the Shuping Landslide in the Three Gorges Area[J]. Remote Sensing, 2017, 9(9): 937 doi: 10.3390/rs9090937
    [36]
    Singleton A, Li Z, Hoey T, et al. Evaluating Sub-pixel Offset Techniques as an Alternative to D-InSAR for Monitoring Episodic Landslide Movements in Vegetated Terrain[J]. Remote Sensing of Environment, 2014, 147: 133-144 doi: 10.1016/j.rse.2014.03.003
    [37]
    Touzi R, Lopes A, Bruniquel J, et al. Coherence Estimation for SAR Imagery[J]. IEEE Transactions on Geoscience and Remote Sensing, 1999, 37(1): 135-149 doi: 10.1109/36.739146
    [38]
    Jiang M, Ding X L, Li Z W. Hybrid Approach for Unbiased Coherence Estimation for Multitemporal InSAR[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52(5): 2 459-2 473 doi: 10.1109/TGRS.2013.2261996
    [39]
    Rosen P A, Hensley S, Zebker H A, et al. Surface Deformation and Coherence Measurements of Kilauea Volcano, Hawaii, from Sir-C Radar Interferometry[J]. Journal of Geophysical Research: Planets, 1996, 101(E10): 23 109-23 125 doi: 10.1029/96JE01459
    [40]
    蒋弥, 丁晓利, 李志伟.时序InSAR同质样本选取算法研究[J].地球物理学报, 2018, 61(12): 4 767-4 776 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201812005

    Jiang Mi, Ding Xiaoli, Li Zhiwei. Homogeneous Pixel Selection Algorithm for Multitemporal InSAR[J]. Chinese Journal of Geophysics, 2018, 61(12): 4 767-4 776 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201812005
    [41]
    Berardino P, Fornaro G, Lanari R, et al. A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(11): 2 375-2 383 doi: 10.1109/TGRS.2002.803792
    [42]
    Tang Y, Zhang Z, Wang C, et al. The Deformation Analysis of Wenjiagou Giant Landslide by the Distributed Scatterer Interferometry Technique[J]. Landslides, 2018, 15(2): 347-357 doi: 10.1007/s10346-017-0917-5
    [43]
    Massonnet D, Feigl K L. Radar Interferometry and Its Application to Changes in the Earth's Surface[J]. Reviews of Geophysics, 1998, 36(4): 441-500 doi: 10.1029/97RG03139
    [44]
    Wang F, Yin Y, Huo Z, et al. Slope Deformation Caused by Water-Level Variation in the Three Gorges Reservoir, China[M]//Sassa K, Rouhban B, Briceño S, et al. Landslides: Global Risk Preparedness. Berlin, Heidelberg: Springer, 2013
    [45]
    Liao M, Tang J, Wang T, et al. Landslide Monitoring with High-Resolution SAR Data in the Three Gorges Region[J]. Science China Earth Sciences, 2012, 55(4): 590-601 doi: 10.1007/s11430-011-4259-1
    [46]
    Jiang H, Feng G, Wang T, et al. Toward Full Exploitation of Coherent and Incoherent Information in Sentinel-1 Tops Data for Retrieving Surface Displacement: Application to the 2016 Kumamoto (Japan) Earthquake[J]. Geophysical Research Letters, 2017, 44(4): 1 758-1 767 https://www.ingentaconnect.com/content/bpl/grl/2017/00000044/00000004/art00017
    [47]
    Luo H, Li Z, Chen J, et al. Integration of Range Split Spectrum Interferometry and Conventional InSAR to Monitor Large Gradient Surface Displacements[J]. International Journal of Applied Earth Observation and Geoinformation, 2019, 74: 130-137 doi: 10.1016/j.jag.2018.09.004
    [48]
    Gomba G, Parizzi A, de Zan F, et al. Toward Operational Compensation of Ionospheric Effects in SAR Interferograms: The Split-Spectrum Method[J]. IEEE Transactions on Geoscience and Remote Sensing, 2016, 54(3): 1 446-1 461 doi: 10.1109/TGRS.2015.2481079
    [49]
    Yu C, Li Z, Penna N T, et al. Generic Atmospheric Correction Model for Interferometric Synthetic Aperture Radar Observations[J]. Journal of Geophysical Research: Solid Earth, 2018, 123(10): 9 202-9 222 doi: 10.1029/2017JB015305
    [50]
    Li Z, Fielding E J, Cross P. Integration of InSAR Time-Series Analysis and Water-Vapor Correction for Mapping Postseismic Motion After the 2003 Bam (Iran) Earthquake[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(9): 3 220-3 230 doi: 10.1109/TGRS.2009.2019125
    [51]
    Cascini L, Fornaro G, Peduto D. Advanced Low-and Full-Resolution DInSAR Map Generation for Slow-Moving Landslide Analysis at Different Scales[J]. Engineering Geology, 2010, 112(1-4): 29-42 doi: 10.1016/j.enggeo.2010.01.003
    [52]
    Notti D, Meisina C, Zucca F, et al. Models to Predict Persistent Scatterers Data Distribution and Their Capacity to Register Movement Along the Slope[C]. The Fringe 2011 Workshop, ESRIN, Frascati, Italy, 2011
    [53]
    Singleton A G. Analysing Landslides in the Three Gorges Region (China) Using Frequently Acquired SAR Images[D]. Glasgow: University of Glasgow, 2014
    [54]
    Song Y S, Sohn H G, Park C H. Efficient Water Area Classification Using RadarSat-1 SAR Imagery in a High Relief Mountainous Environment[J]. Photogrammetric Engineering & Remote Sensing, 2007, 73(3): 285-296 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=85dab6b6c2aa5a027d6de472a1df5aff
    [55]
    王健, 向茂生, 李绍恩.一种基于InSAR相干系数的SAR阴影提取方法[J].武汉大学学报·信息科学版, 2005, 30(12): 1 063-1 066 http://ch.whu.edu.cn/CN/abstract/abstract2340.shtml

    Wang Jian, Xiang Maosheng, Li Shaoen. A Method for Extracting the SAR Shadow from InSAR Cohe-rence[J]. Geomatics and Information Science of Wuhan University, 2005, 30(12): 1 063-1 066 http://ch.whu.edu.cn/CN/abstract/abstract2340.shtml
    [56]
    Papson S, Narayanan R M. Classification via the Shadow Region in SAR Imagery[J]. IEEE Transactions on Aerospace and Electronic Systems, 2012, 48(2): 969-980 doi: 10.1109/TAES.2012.6178042
    [57]
    任云, 邹焕新, 秦先祥, 等.一种InSAR叠掩与阴影区域的检测方法[J].中南大学学报(自然科学版), 2013, 44(S2): 396-400 http://d.old.wanfangdata.com.cn/Conference/8128957

    Ren Yun, Zou Huanxin, Qin Xianxiang, et al. A Method for Layover and Shadow Detecting in InSAR[J]. Journal of Central South University (Sicence and Technology), 2013, 44(S2): 396-400 http://d.old.wanfangdata.com.cn/Conference/8128957
    [58]
    魏恋欢, 廖明生, BALZ Timo, 等.高分辨率SAR层析成像建筑物叠掩散射体提取[J].武汉大学学报·信息科学版, 2014, 39(5): 536-540 http://ch.whu.edu.cn/CN/abstract/abstract2974.shtml

    Wei Lianhuan, Liao Mingsheng, BALZ Timo, et al. Layover Building Scatterers Extraction via High-Resolution Spaceborne SAR Tomography[J]. Geomatics and Information Science of Wuhan University, 2014, 39(5): 536-540 http://ch.whu.edu.cn/CN/abstract/abstract2974.shtml
    [59]
    Kropatsch W G, Strobl D. The Generation of SAR Layover and Shadow Maps from Digital Elevation Models[J]. IEEE Transactions on Geoscience and Remote Sensing, 1990, 28(1): 98-107 doi: 10.1109/36.45752
    [60]
    Hooper A. A Statistical-Cost Approach to Unwrapping the Phase of InSAR Time Series[C]. International Workshop on ERS SAR Interferometry, Frascati, Italy, 2010
    [61]
    Hooper A, Zebker H A. Phase Unwrapping in Three Dimensions with Application to InSAR Time Series[J]. Journal of the Optical Society of America A, 2007, 24(9): 2 737-2 747 doi: 10.1364/JOSAA.24.002737
    [62]
    Shabou A, Baselice F, Ferraioli G. Urban Digital Elevation Model Reconstruction Using Very High Resolution Multichannel InSAR Data[J]. IEEE Transactions on Geoscience and Remote Sensing, 2012, 50(11): 4 748-4 758 doi: 10.1109/TGRS.2012.2191155
    [63]
    Ferraioli G, Shabou A, Tupin F, et al. Multichannel Phase Unwrapping with Graph Cuts[J]. IEEE Geoscience and Remote Sensing Letters, 2009, 6(3): 562-566 doi: 10.1109/LGRS.2009.2021165
    [64]
    Ferraiuolo G, Pascazio V, Schirinzi G. Maximum a Posteriori Estimation of Height Profiles in InSAR Imaging[J]. IEEE Geoscience and Remote Sensing Letters, 2004, 1(2): 66-70 doi: 10.1109/LGRS.2003.822882
    [65]
    Shabou A, Tupin F. A Markovian Approach for DEM Estimation from Multiple InSAR Data with Atmospheric Contributions[J]. IEEE Geoscience and Remote Sensing Letters, 2012, 9(4): 764-768 doi: 10.1109/LGRS.2011.2181326
    [66]
    Pepe A, Lanari R. On the Extension of the Minimum Cost Flow Algorithm for Phase Unwrapping of Multitemporal Differential SAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(9): 2 374-2 383 doi: 10.1109/TGRS.2006.873207
    [67]
    Pepe A, Yang Y, Manzo M, et al. Improved EMCF-SBAS Processing Chain Based on Advanced Techniques for the Noise-Filtering and Selection of Small Baseline Multi-look DInSAR Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(8): 4 394-4 417 doi: 10.1109/TGRS.2015.2396875
    [68]
    Ambrosino R, Baselice F, Ferraioli G, et al. Extended Kalman Filter for Multichannel InSAR Height Reconstruction[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(10): 5 854-5 863 doi: 10.1109/TGRS.2017.2716185
    [69]
    Liu H, Xing M, Bao Z. A Cluster-Analysis-Based Noise-Robust Phase-Unwrapping Algorithm for Multibaseline Interferograms[J]. IEEE Transactions on Geoscience and Remote Sensing, 2015, 53(1): 494-504 doi: 10.1109/TGRS.2014.2324595
    [70]
    Yu H, Li Z, Bao Z. A Cluster-Analysis-Based Efficient Multibaseline Phase-Unwrapping Algorithm[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(1): 478-487 doi: 10.1109/TGRS.2010.2055569
    [71]
    戴可人.融合新一代卫星SAR数据的地形与形变信息提取模型与方法[D].成都: 西南交通大学, 2017

    Dai Keren. Integration of New Generation SAR Data for Extracting the Earth's Surface Topography and Displacement: Methodology and Modelling[D]. Chengdu: Southwest Jiaotong University, 2017
    [72]
    Wasowski J, Bovenga F. Investigating Landslides and Unstable Slopes with Satellite Multi Temporal Interferometry: Current Issues and Future Perspectives[J].Engineering Geology, 2014, 174:103-138 doi: 10.1016/j.enggeo.2014.03.003
  • Related Articles

    [1]WANG Yanli, DONG Zhipeng, WANG Mi. Ulva polifera Detection from High Resolution Remote Sensing Images Based on Dual-Path Convolutional Neural Networks[J]. Geomatics and Information Science of Wuhan University, 2024, 49(12): 2261-2270. DOI: 10.13203/j.whugis20230159
    [2]TANG Xiaochuan, TU Zihan, REN Xuqing, FANG Chengyong, WANG Yu, LIU Xin, FAN Xuanmei. A Multi-modal Deep Neural Network Model for Forested Landslide Detection[J]. Geomatics and Information Science of Wuhan University, 2024, 49(9): 1566-1573. DOI: 10.13203/j.whugis20230099
    [3]ZHANG Li, DONG Youfu, LI Ming. ASTER GDEM and SRTM1 Elevation Data Integration with RProp Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(5): 777-783. DOI: 10.13203/j.whugis20200679
    [4]TAO Liqing, HUANG Guoman, YANG Shucheng, WANG Tongtong, SHENG Huijun, FAN Haitao. A Interferogram Denoising Method Based on Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2023, 48(4): 559-567. DOI: 10.13203/j.whugis20200589
    [5]GUO Congzhou, LI Ke, LI He, TONG Xiaochong, WANG Xiwen. Deep Convolution Neural Network Method for Remote Sensing Image Quality Level Classification[J]. Geomatics and Information Science of Wuhan University, 2022, 47(8): 1279-1286. DOI: 10.13203/j.whugis20200292
    [6]REN Jiaxin, LIU Wanzeng, LI Zhilin, LI Ran, ZHAI Xi. Intelligent Detection of "Problematic Map" Using Convolutional Neural Network[J]. Geomatics and Information Science of Wuhan University, 2021, 46(4): 570-577. DOI: 10.13203/j.whugis20190259
    [7]ZHAO Xianghong, BAO Jingyang, OUYANG Yongzhong, HUANG Xianyuan, HUANG Chenhu, LU Xiuping. Detecting Outlier of Multibeam Sounding with BP Neural Network[J]. Geomatics and Information Science of Wuhan University, 2019, 44(4): 518-524. DOI: 10.13203/j.whugis20160336
    [8]SUN Deyong, LI Yunmei, WANG Qiao, LE Chengfeng. Remote Sensing Retrieval of CDOM Concentration in Lake Taihu with Hyper-spectral Data and Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 2009, 34(7): 851-855.
    [9]WANG Jianmei, QIN Wenzhong. BP Neural Network Classifier Based on Levenberg-Marquardt Algorithm[J]. Geomatics and Information Science of Wuhan University, 2005, 30(10): 928-931.
    [10]Huang Wenqian. Recognition of Point-shaped Map Symbols with a New Neural Network Model[J]. Geomatics and Information Science of Wuhan University, 1996, 21(1): 46-49.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return