LIU Guoxiang, ZHANG Bo, ZHANG Rui, CAI Jialun, FU Yin, LIU Qiao, YU Bing, LI Zhilin. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995. DOI: 10.13203/j.whugis20190077
Citation: LIU Guoxiang, ZHANG Bo, ZHANG Rui, CAI Jialun, FU Yin, LIU Qiao, YU Bing, LI Zhilin. Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR[J]. Geomatics and Information Science of Wuhan University, 2019, 44(7): 980-995. DOI: 10.13203/j.whugis20190077

Monitoring Dynamics of Hailuogou Glacier and the Secondary Landslide Disasters Based on Combination of Satellite SAR and Ground-Based SAR

Funds: 

The National Key Research and Development Program of China 2017YFB0502700

the National Natural Science Foundation of China 41771402

the National Natural Science Foundation of China 41871069

the National Natural Science Foundation of China 41601503

the National Natural Science Foundation of China 41801399

the Project on the Application Foundation of Sichuan Science and Technology Support Plan 2018JY0564

the Project on the Application Foundation of Sichuan Science and Technology Support Plan 2018JY0138

More Information
  • Author Bio:

    LIU Guoxiang, PhD, professor, specializes in the persistent scatterer InSAR (PS-InSAR) and inversion of regional ground deformation. E-mail: rsgxliu@swjtu.edu.cn

  • Corresponding author:

    ZHANG Bo, PhD candidate. E-mail:rsbozh@qq.com

  • Received Date: March 17, 2019
  • Published Date: July 04, 2019
  • Due to the influence of global climate change, most glaciers in southeastern Tibet and Hengduan Mountains in recent years have been losing weight, deteriorating and thinning, which has caused the variation of glacier movement characteristics, resulting in frequent disasters such as debris flows and landslides. In order to break through the bottleneck of optical remote sensing restricted by climatic conditions, this paper combines satellite and ground-based synthetic aperture radar (SAR) technology and selects Hailuogou Glacier (HLG) basin as a typical research area to carry out time series monitoring and analysis. Firstly, by using 38 SAR images acquired by PALSAR-1/2 satellites from 2007 to 2018, the temporal and spatial variations and local surface displacements of HLG in Gongga Mountain are monitored by using the pixel offset tracking (POT) method. The average velocity of HLG No.1 is slowed down by 7.27% per year in recent years, and the slow-down rate reaches 15.57% per year in the ablation areas. At the same time, several unstable landslides are detected by POT and Stacking-InSAR methods at the moraine embankment on the side of the glacier. Statistical analysis confirms that the movement of such landslides is strongly correlated with the melting of the glacier. The sliding speed reaches its peak in summer every year. The maximum sliding speed in 2018 was 100 mm/d in the north-south direction and 50 mm/d in the east-west direction. Subsequently, by utilization of the high-frequency real-time monitoring data of ground-based radar, it is further determined that the sliding speed reaches its peak value of 150 mm/d on July 9, 2018, and abnormal fluctuations occur with the subsequent collapse, which shows in detail the whole process of landslide creep to result in disasters. Relevant research data and the monitoring results can provide a reference for the study of the cryosphere and mountain hazards.
  • [1]
    IPCC. Climate Change 2014: The Physical Science Basis. Report of Working Group of the Intergovernmental Panel on Climate Change[M]. Cambridge: Cambridge University Press, 2014
    [2]
    Wang W, Yao T, Gao Y, et al. A First-Order Method to Identify Potentially Dangerous Glacial Lakes in a Region of the Southeastern Tibetan Plateau[J].Mountain Research and Development, 2011, 31(2): 122-130 doi: 10.1659/MRD-JOURNAL-D-10-00059.1
    [3]
    Wang W, Yao T, Yang X.Variations of Glacial Lakes and Glaciers in the Boshula Mountain Range, Southeast Tibet, from the 1970s to 2009[J]. Annals of Glaciology, 2011, 52(58): 9-17 doi: 10.3189/172756411797252347
    [4]
    童立强, 涂杰楠, 裴丽鑫, 等.雅鲁藏布江加拉白垒峰色东普流域频繁发生碎屑流事件初步探讨[J].工程地质学报, 2018, 26(6): 1 552-1 561 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806018

    Tong Liqiang, Tu Jienan, Pei Lixin, et al.Preliminary Discussion of the Frequently Debris Flow Events in Sedongpu Basin at Gyalaperi Peak, Yarlung Zangbo River[J]. Journal of Engineering Geology, 2018, 26(6): 1 552-1 561 http://d.old.wanfangdata.com.cn/Periodical/gcdzxb201806018
    [5]
    姚檀栋, 秦大河, 沈永平, 等.青藏高原冰冻圈变化及其对区域水循环和生态条件的影响[J].自然杂志, 2013, 35(3): 179-186 http://d.old.wanfangdata.com.cn/Periodical/zrzz201303005

    Yao Tandong, Qin Dahe, Shen Yongping, et al. Cryospheric Changes and Their Impacts on Regional Water Cycle and Ecological Conditions in the Qinghai-Tibetan Plateau[J]. Chinese Journal of Nature, 2013, 35(3): 179-186 http://d.old.wanfangdata.com.cn/Periodical/zrzz201303005
    [6]
    杜建括, 何元庆, 李双, 等.横断山区典型海洋型冰川物质平衡研究[J].地理学报, 2015, 70(9):1 415-1 422 http://d.old.wanfangdata.com.cn/Periodical/dlxb201509005

    Du Jiankuo, He Yuanqing, Li Shuang, et al. Mass Balance of a Typical Monsoonal Temperate Glacier in Hengduan Mountains Region[J]. Acta Geographica Sinica, 2015, 70(9): 1 415-1 422 http://d.old.wanfangdata.com.cn/Periodical/dlxb201509005
    [7]
    施雅风, 刘时银.中国冰川对21世纪全球变暖响应的预估[J].科学通报, 2000, 45(4): 434-438 doi: 10.3321/j.issn:0023-074X.2000.04.021

    Shi Yafeng, Liu Shiyin. Estimate of the Response of Glaciers in China to the Global Warming-up in the 21th Century[J]. Chinese Science Bulletin, 2000, 45(4): 434-438 doi: 10.3321/j.issn:0023-074X.2000.04.021
    [8]
    Braithwaite R J, Zhang Y. Sensitivity of Mass Balance of Five Swiss Glaciers to Temperature Changes Assessed by Tuning a Degree-Day Model[J]. Journal of Glaciology, 2000, 46(152): 7-14 doi: 10.3189/172756500781833511
    [9]
    苏珍, 宋国平, 曹真堂.贡嘎山海螺沟冰川的海洋性特征[J].冰川冻土, 1996, 18(S1):51-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600171641

    Su Zhen, Song Guoping, Cao Zhentang. Maritime Characteristics of Hailuogou Glacier in the Gongga Mountains[J].Journal of Glaciology and Geocryo-logy, 1996, 18(S1):51-59 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=QK199600171641
    [10]
    刘巧, 张勇.贡嘎山海洋型冰川监测与研究:历史, 现状与展望[J].山地学报, 2017, 35(5): 717-726 http://d.old.wanfangdata.com.cn/Periodical/sdxb201705013

    Liu Qiao, Zhang Yong. Studies on the Dynamics of Monsoonal Temperate Glaciers in Mt.Gongga:A Review[J].Mountain Research, 2017, 35(5): 717-726 http://d.old.wanfangdata.com.cn/Periodical/sdxb201705013
    [11]
    刘时银, 姚晓军, 郭万钦, 等.基于第二次冰川编目的中国冰川现状[J].地理学报, 2015, 70(1): 3-16 http://d.old.wanfangdata.com.cn/Periodical/dlxb201501001

    Liu Shiyin, Yao Xiaojun, Guo Wanqin, et al. The Contemporary Glaciers in China Based on the Second Chinese Glacier Inventory[J].Acta Geographica Sinica, 2015, 70(1): 3-16 http://d.old.wanfangdata.com.cn/Periodical/dlxb201501001
    [12]
    Dehecq A, Gourmelen N, Gardner A S, et al. Twenty-First Century Glacier Slowdown Driven by Mass Loss in High Mountain Asia[J].Nature Geoscience, 2019, 12(1): 22, doi: 10.1038/s41561-018-0271-9
    [13]
    Altena B, Scambos T, Fahnestock M, et al. Extracting Recent Short-Term Glacier Velocity Evolution Over Southern Alaska and the Yukon from a Large Collection of Landsat Data[J]. The Cryosphere, 2019, 13(3):795-814 doi: 10.5194/tc-13-795-2019
    [14]
    Scherler D, Leprince S, Strecker M R. Glacier-Surface Velocities in Alpine Terrain from Optical Satellite Imagery-Accuracy Improvement and Quality Assessment[J]. Remote Sensing of Environment, 2008, 112(10): 3 806-3 819 doi: 10.1016/j.rse.2008.05.018
    [15]
    Dehecq A, Gourmelen N, Trouvé E. Deriving Large-Scale Glacier Velocities from a Complete Satellite Archive: Application to the Pamir-Karakoram-Himalaya[J]. Remote Sensing of Environment, 2015, 162: 55-66 doi: 10.1016/j.rse.2015.01.031
    [16]
    周志伟, 鄢子平, 刘苏, 等.永久散射体与短基线雷达干涉测量在城市地表形变中的应用[J].武汉大学学报·信息科学版, 2011, 36(8): 928-931 http://ch.whu.edu.cn/CN/abstract/abstract635.shtml

    Zhou Zhiwei, Yan Ziping, Liu Su, et al. Persistent Scatterers and Small Baseline SAR Interferometry for City Subsidence Mapping: A Case Study in Panjin, China[J].Geomatics and Information Science of Wuhan University, 2011, 36(8): 928-931 http://ch.whu.edu.cn/CN/abstract/abstract635.shtml
    [17]
    Franceschetti G, Lanari R. Synthetic Aperture Radar Processing[M]. Boca Raton:CRC Press, 2018
    [18]
    周春霞, 鄂栋臣, 廖明生. InSAR用于南极测图的可行性研究[J].武汉大学学报·信息科学版, 2004, 29(7): 619-623 http://ch.whu.edu.cn/CN/abstract/abstract4513.shtml

    Zhou Chunxia, E Dongchen, Liao Mingsheng. Feasibility of InSAR Application to Antarctic Mapping[J]. Geomatics and Information Science of Wuhan University, 2004, 29(7): 619-623 http://ch.whu.edu.cn/CN/abstract/abstract4513.shtml
    [19]
    邓方慧, 周春霞, 王泽民, 等.利用偏移量跟踪测定Amery冰架冰流汇合区的冰流速[J].武汉大学学报·信息科学版, 2015, 40(7): 901-906 http://ch.whu.edu.cn/CN/abstract/abstract3296.shtml

    Deng Fanghui, Zhou Chunxia, Wang Zemin, et al. Ice-Flow Velocity Derivation of the Confluence Zone of the Amery Ice Shelf Using Offset-Tracking Method[J]. Geomatics and Information Science of Wuhan University, 2015, 40(7): 901-906 http://ch.whu.edu.cn/CN/abstract/abstract3296.shtml
    [20]
    Berthier E, Vadon H, Baratoux D, et al. Surface Motion of Mountain Glaciers Derived from Satellite Optical Imagery[J].Remote Sensing of Environment, 2005, 95(1): 14-28 doi: 10.1016/j.rse.2004.11.005
    [21]
    何元庆, 张忠林, 姚檀栋, 等.中国季风温冰川区近代气候变化与冰川动态[J].地理学报, 2003, 58(4):550-558 doi: 10.3321/j.issn:0375-5444.2003.04.009

    He Yuanqing, Zhang Zhonglin, Yao Tandong, et al. Modern Changes of the Climate and Glaciers in China's Monsoonal Temperate Glacier Region[J]. Acta Geographica Sinica, 2003, 58(4): 550-558 doi: 10.3321/j.issn:0375-5444.2003.04.009
    [22]
    刘巧, 刘时银, 张勇, 等.贡嘎山海螺沟冰川消融区表面消融特征及其近期变化[J].冰川冻土, 2011, 33(2): 227-236 http://d.old.wanfangdata.com.cn/Periodical/bcdt201102001

    Liu Qiao, Liu Shiyin, Zhang Yong, et al. Surface Ablation Features and Recent Variation of the Lower Ablation Area of the Hailuogou Glacier, Mt.Gongga[J]. Journal of Glaciology and Geocryology, 2011, 33(2): 227-236 http://d.old.wanfangdata.com.cn/Periodical/bcdt201102001
    [23]
    Liu Q, Liu S, Zhang Y, et al. Recent Shrinkage and Hydrological Response of Hailuogou Glacier, a Monsoon Temperate Glacier on the East Slope of Mount Gongga, China[J]. Journal of Glaciology, 2010, 56(196): 215-224 doi: 10.3189/002214310791968520
    [24]
    李宗省, 何元庆, 贾文雄, 等.全球变暖背景下海螺沟冰川近百年的变化[J].冰川冻土, 2009, 31(1):75-81 http://d.old.wanfangdata.com.cn/Periodical/bcdt200901011

    Li Zongxing, He Yuanqing, Jia Wenxiong, et al. Changes in Hailuogou Glacier During the Recent 100 Years Under Global Warming[J]. Journal of Glaciology and Geocryology, 2009, 31(1): 75-81 http://d.old.wanfangdata.com.cn/Periodical/bcdt200901011
    [25]
    刘云华, 屈春燕, 单新建.基于SAR影像偏移量获取汶川地震二维形变场[J].地球物理学报, 2012, 55(10): 3 296-3 306 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201210012

    Liu Yunhua, Qu Chunyan, Shan Xinjian. Two-Dimensional Displacement Field of the Wenchuan Earthquake Inferred from SAR Intensity Offset-Tacking[J]. Chinese Journal of Geophysics, 2012, 55(10): 3 296-3 306 http://d.old.wanfangdata.com.cn/Periodical/dqwlxb201210012
    [26]
    Shi X, Zhang L, Balz T, et al. Landslide Deformation Monitoring Using Point-Like Target Offset Tracking with Multi-mode High-Resolution TerraSAR-X Data[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2015, 105: 128-140 doi: 10.1016/j.isprsjprs.2015.03.017
    [27]
    Michel R, Avouac J P, Taboury J. Measuring Ground Displacements from SAR Amplitude Images: Application to the Landers Earthquake[J]. Geophysical Research Letters, 1999, 26(7): 875-878 doi: 10.1029/1999GL900138
    [28]
    Pathier E, Fielding E J, Wright T J, et al. Displacement Field and Slip Distribution of the 2005 Kashmir Earthquake from SAR Imagery[J].Geophysical Research Letters, 2006, 33(20): L20310 doi: 10.1029/2006GL027193
    [29]
    Fielding E J, Lundgren P R, Taymaz T, et al. Fault-Slip Source Models for the 2011 M 7.1 Van Earthquake in Turkey from SAR Interferometry, Pixel Offset Tracking, GPS, and Seismic Waveform Analysis[J]. Seismological Research Letters, 2013, 84(4): 579-593 doi: 10.1785/0220120164
    [30]
    Schellenberger T, Dunse T, Kääb A, et al. Surface Speed and Frontal Ablation of Kronebreen and Kongsbreen, NW-Svalbard, from SAR Offset Tracking[J].The Cryosphere Discussions, 2014, 8(6):6 193-6 233 doi: 10.5194/tcd-8-6193-2014
    [31]
    陈强, 罗容, 杨莹辉, 等.利用SAR影像配准偏移量提取地表形变的方法与误差分析[J].测绘学报, 2015, 44(3): 301-308 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201503010.htm

    Chen Qiang, Luo Rong, Yang Yinghui, et al. Method and Accuracy of Extracting Surface Deformation Field from SAR Image Coregistration[J].Acta Geodaetica et Cartographica Sinica, 2015, 44(3):301-308 http://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201503010.htm
    [32]
    Noferini L, Pieraccini M, Mecatti D, et al. Using GB-SAR Technique to Monitor Slow Moving Landslide[J].Engineering Geology, 2007, 95(3-4): 88-98 doi: 10.1016/j.enggeo.2007.09.002
    [33]
    Nolesini T, Di Traglia F, Del Ventisette C, et al. Deformations and Slope Instability on Stromboli Volcano: Integration of GBInSAR Data and Analog Modeling[J]. Geomorphology, 2013, 180: 242-254 http://cn.bing.com/academic/profile?id=aa9be8615f664ffdfb576518e75620c7&encoded=0&v=paper_preview&mkt=zh-cn
    [34]
    Monserrat O, Crosetto M, Luzi G. A Review of Ground-Based SAR Interferometry for Deformation Measurement[J].ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 93: 40-48 doi: 10.1016/j.isprsjprs.2014.04.001
    [35]
    Yigit E, Demirci S, Unal A, et al. Millimeter-Wave Ground-Based Synthetic Aperture Radar Imaging for Foreign Object Debris Detection: Experimental Studies at Short Ranges[J].Journal of Infrared, Millimeter, and Terahertz Waves, 2012, 33(12): 1 227-1 238 doi: 10.1007/s10762-012-9938-2
    [36]
    Noferini L, Mecatti D, Macaluso G, et al. Monitoring of Belvedere Glacier Using a Wide Angle GB-SAR Interferometer[J].Journal of Applied Geophysics, 2009, 68(2): 289-293 doi: 10.1016/j.jappgeo.2009.02.004
    [37]
    Luzi G, Pieraccini M, Mecatti D, et al. Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry[J]. IEEE Geoscience and Remote Sensing Letters, 2007, 4(3): 495-499 doi: 10.1109/LGRS.2007.898282
  • Related Articles

    [1]SHEN Yongjie, YANG Chuncheng, SHANG Haibin, XU Li, WANG Zefan. Temporal and Spatial Variation Analysis of Urban Socioeconomic Activity in Public Health Emergencies[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 603-614. DOI: 10.13203/j.whugis20220016
    [2]ZHANG Guangli, LIAN Chenchen, KONG Yunfeng, ZHAI Shiyan, GUO Hao. Equal Districting for Emergency Planning of Citywide Emergency Test[J]. Geomatics and Information Science of Wuhan University, 2025, 50(3): 596-602. DOI: 10.13203/j.whugis20220222
    [3]ZHONG Leiyang, ZHOU Ying, GAO Song, XIA Jizhe, LI Zhen, LI Xiaoming, YUE Yang, LI Qingquan. Identifying Human Mobility Patterns Changes During Public Health Emergencies[J]. Geomatics and Information Science of Wuhan University, 2024, 49(7): 1237-1249. DOI: 10.13203/j.whugis20210400
    [4]LIU Jiping, WANG Zhuolu, XU Shenghua, REN Fu, WANG Yong, TANG Qing, ZHOU Tingting. Emergency Surveying and Mapping in the Era of Artificial Intelligence[J]. Geomatics and Information Science of Wuhan University. DOI: 10.13203/j.whugis20240300
    [5]ZHAO Qingzhi, YANG Pengfei, LI Zufeng, YAO Wanqiang, YAO Yibin. Spatial and Temporal Characteristics of AOD and Meteorological Factors in China During the Period of Public Health Emergencies[J]. Geomatics and Information Science of Wuhan University, 2023, 48(12): 2019-2032. DOI: 10.13203/j.whugis20210209
    [6]FANG Zhixiang. Thinking and Challenges of Crowd Dynamics Observation from the Perspectives of Public Health and Public Security[J]. Geomatics and Information Science of Wuhan University, 2020, 45(12): 1847-1856. DOI: 10.13203/j.whugis20200422
    [7]ZHANG Xin, LIN Hui, WANG Jinfeng, XU Chengdong, HU Maogui, MENG Bin, LIU Donglin, XU Min, ZHU Changming, WANG Gang, CAO Chunxiang, LUO Jiancheng, XIAO Guirong, LU Yimin, YANG Yu, ZHI Guoqing. Scientific and Technological Strategies Proposal for the Construction of Digital Public Health Emergency Management System in China[J]. Geomatics and Information Science of Wuhan University, 2020, 45(5): 633-639. DOI: 10.13203/j.whugis20200151
    [8]TIAN Jing, LUO Yun, LIN Liupeng, REN Chang. A Comparative Study of Two Strategies of Road Network Selection[J]. Geomatics and Information Science of Wuhan University, 2019, 44(2): 310-316. DOI: 10.13203/j.whugis20130602
    [9]LIU Xin, YIN Qian, GUO Ping. A Study of Software Fault Tolerance System Evaluation Strategy[J]. Geomatics and Information Science of Wuhan University, 2008, 33(10): 1018-1021.
    [10]WU Dijun, SUN Haiyan, HUANG Quanyi, XIONG Jinbao. 1D Mathematical Model of Flood Routing on the Emergency Platform[J]. Geomatics and Information Science of Wuhan University, 2008, 33(5): 542-545.

Catalog

    Article views (2798) PDF downloads (524) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return