LUO Yiyong, ZHANG Jingying, CHEN Junyi, HUANG Cheng, WANG Xin. Tropospheric Delay Prediction Based on Phase Space Reconstruction and Gaussian Process Regression[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 103-110. DOI: 10.13203/j.whugis20190018
Citation: LUO Yiyong, ZHANG Jingying, CHEN Junyi, HUANG Cheng, WANG Xin. Tropospheric Delay Prediction Based on Phase Space Reconstruction and Gaussian Process Regression[J]. Geomatics and Information Science of Wuhan University, 2021, 46(1): 103-110. DOI: 10.13203/j.whugis20190018

Tropospheric Delay Prediction Based on Phase Space Reconstruction and Gaussian Process Regression

Funds: 

The National Natural Science Foundation of China 41861058

The National Natural Science Foundation of China 41664001

the Natural Science Foundation of Jiangxi Province 20202BABL204070

More Information
  • Author Bio:

    LUO Yiyong, PhD, associate professor, specializes in deformation data processing method.E-mail: luoyiyong@whu.edu.cn

  • Received Date: December 11, 2019
  • Published Date: January 04, 2021
  • Zenith tropospheric delay (ZTD) is a key factor affecting global positioning system (GPS) positioning accuracy. In order to improve the prediction accuracy of ZTD, a Gaussian process(GP) regression prediction model based on phase space reconstruction is proposed.In view of the chaotic characteristics of ZTD time series, using the ZTD data provided by the International Global Navigation Satellite System Service (IGS) stations.Firstly, the embedded dimension is determined using Cao method, phase space reconstruction of ZTD data is carried out, and the precision and accuracy of ZTD using GP model for 12 IGS ststions at different latitude levels in the southern and northern hemisphere are explored.Then, in order to verify the effectiveness of GP model, the prediction results are compared with the original data and prediction results of the back propagation (BP) neural network model, and the influence of different time on the prediction accuracy of ZTD is further explored. Finally, the influence of longitude and altitude on the prediction accuracy of ZTD is analyzed.The results show that the root mean square error (RMSE) of GP model prediction results reaches mm level, the correlation between GP model and theoretical value reaches 0.997, and the prediction accuracy index is obviously better than that of BP neural network model. The prediction accuracy of GP model in the southern hemisphere is higher than that in the northern hemisphere, and RMSE in the high latitude area is less than 3.6 mm, which is more suitable for the tropospheric delay prediction in the high latitude area. In the time domain of the study, the prediction accuracy of GP model at night is higher than that in the day at most sites, the longitude has no obvious influence on the prediction accuracy of ZTD, and the altitude is proportional to the prediction accuracy of ZTD. Therefore, GP model has better practicability and feasibility for the prediction of tropospheric delay.
  • [1]
    张超, 戴吾蛟, 石强, 等.电离层延迟对单频GPS点的影响及改正方法研究[J].武汉大学学报·信息科学版, 2018, 43(3):471-477 doi: 10.13203/j.whugis20150546

    Zhang Chao, Dai Wujiao, Shi Qiang, et al.Influence of Ionosphere Delay on Single Frequency GPS Point and Its Correction Method[J].Geomatics and Information Science of Wuhan University, 2018, 43(3):471-477 doi: 10.13203/j.whugis20150546
    [2]
    吉绪发, 卢辰龙.GPS多路径误差滤波方法比较研究[J].测绘通报, 2015(4):10-13 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201504004.htm

    Ji Xufa, Lu Chenlong.Comparing Different Filtering Methods for Mitigation of GPS Multipath Error[J].Bulletin of Surveying and Mapping, 2015(4):10-13 https://www.cnki.com.cn/Article/CJFDTOTAL-CHTB201504004.htm
    [3]
    王勇, 张立辉, 杨晶.基于BP神经网络的对流层延迟预测研究[J].大地测量与地球动力学, 2011, 31(3):134-137 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201103032.htm

    Wang Yong, Zhang Lihui, Yang Jing.Study on Prediction of Zenith Tropospheric Delay by Use of BP Neural Network[J].Journal of Geodesy and Geodynamics, 2011, 31(3):134-137 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201103032.htm
    [4]
    李剑锋, 王永前, 郭俊元.预测模型在对流层延迟计算中的应用研究[J].测绘科学技术学报, 2015, 32(5):450-454 doi: 10.3969/j.issn.1673-6338.2015.05.003

    Li Jianfeng, Wang Yongqian, Guo Junyuan.Research on Tropospheric Delay Calculation with Prediction Model[J].Journal of Geomatics Science and Technology, 2015, 32(5):450-454 doi: 10.3969/j.issn.1673-6338.2015.05.003
    [5]
    吕慧珠, 黄文德, 闻德保.一种基于频谱分析和AR补偿的对流层延迟预报模型[J].大地测量与地球动力学, 2015, 35(2):283-286 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502026.htm

    Lü Huizhu, Huang Wende, Wen Debao.A Tropospheric Delay Prediction Model Based on Spectrum Analysis and the AR Compensation[J].Journal of Geodesy and Geodynamics, 2015, 35(2):283-286 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201502026.htm
    [6]
    尹为松, 陶庭叶, 邓清军, 等.遗传算法优化的GPS对流层延迟内插算法[J].测绘科学, 2016, 41(1):180-184 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201601035.htm

    Yin Weisong, Tao Tingye, Deng Qingjun, et al.Interpolation Algorithm of GPS Tropospheric Delay Based on GA-BP[J].Science of Surveying and Mapping, 2016, 41(1):180-184 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201601035.htm
    [7]
    任超, 刘中流, 梁月吉, 等.基于EEMD-SARIMA的对流层延迟预测模型研究[J].大地测量与地球动力学, 2018, 38(9):953-957 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201809014.htm

    Ren Chao, Liu Zhongliu, Liang Yueji, et al.Research on Tropospheric Delay Prediction Model Based on EEMD-SARIMA[J].Journal of Geodesy and Geodynamics, 2018, 38(9):953-957 https://www.cnki.com.cn/Article/CJFDTOTAL-DKXB201809014.htm
    [8]
    肖恭伟, 欧吉坤, 刘国林, 等.基于改进的BP神经网络构建区域精密对流层延迟模型[J].地球物理学报, 2018, 61(8):3 139-3 148 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201808004.htm

    Xiao Gongwei, Ou Jikun, Liu Guolin, et al.Construction of a Regional Precise Tropospheric Delay Model Based on Improved BP Neural Network[J].Chinese Journal of Geophysics, 2018, 61(8):3 139-3 148 https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201808004.htm
    [9]
    张艳兰, 栾元重, 尹燕运, 等.混沌时间序列相空间重构及特性识别[J].测绘科学, 2016, 41(4):15-18 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201604004.htm

    Zhang Yanlan, Luan Yuanzhong, Yin Yanyun, et al.The Deformation Monitoring of Chaotic Time Series Phase Space Reconstruction and Feature Recognition[J].Science of Surveying and Mapping, 2016, 41(4):15-18 https://www.cnki.com.cn/Article/CJFDTOTAL-CHKD201604004.htm
    [10]
    Takens F.Detecting Strange Attractors in Turbulence[J].Lecture Notes in Mathematics, 1981, 898:366-381
    [11]
    王建民, 张锦.基于高斯过程回归的变形智能预测模型及应用[J].武汉大学学报·信息科学版, 2018, 43(2):248-254 doi: 10.13203/j.whugis20160075

    Wang Jianmin, Zhang Jin.Deformation Intelligent Prediction Model Based on Gaussian Process Regression and Application[J].Geomatics and Information Science of Wuhan University, 2018, 43(2):248-254 doi: 10.13203/j.whugis20160075
    [12]
    李军, 张友鹏.基于高斯过程的混沌时间序列单步与多步预测[J].物理学报, 2011, 60(7):143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201107021.htm

    Li Jun, Zhang Youpeng.Single-Step and Multiple-Step Prediction of Chaotic Time Series Using Gaussian Process Model[J].Acta Physica Sinica, 2011, 60(7):143-152 https://www.cnki.com.cn/Article/CJFDTOTAL-WLXB201107021.htm
    [13]
    Rasmussen C E, Williams C K I.Gaussian Processes for Machine Learning[M].Massachusetts:The MIT Press, 2006
    [14]
    Cao L.Practical Method for Determining the Minimum Embedding Dimension of a Scalar Time Series[M].Amsterdam:Elsevier Science Publishers, 1997
    [15]
    陈永潮.北半球区域对流层延迟模型研究[D].南京: 东南大学, 2017

    Chen Yongchao.Research on Tropospheric Delay Model in the Northern Hemisphere[D].Nanjing: Southeast University, 2017
    [16]
    黄良珂, 刘立龙, 文鸿雁, 等.亚洲地区EGNOS天顶对流层延迟模型单站修正与精度分析[J].测绘学报, 2014, 43(8):808-817 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201408007.htm

    Huang Liangke, Liu Lilong, Wen Hongyan, et al.Single-Site Improvement and Accuracy Analysis for Zenith Tropospheric Delay of EGNOS Model over Asia Area[J].Acta Geodaetica et Cartographica Sinica, 2014, 43(8):808-817 https://www.cnki.com.cn/Article/CJFDTOTAL-CHXB201408007.htm
  • Cited by

    Periodical cited type(4)

    1. 张露露,黄希芬. 联合均值和散度逆高斯回归模型的参数估计. 统计与决策. 2024(09): 49-54 .
    2. 董婷,符潍奇,邵攀,高利鹏,武昌东. 基于改进全连接条件随机场的SAR影像变化检测. 自然资源遥感. 2023(03): 134-144 .
    3. 王昶,张永生,王旭. 基于变分法与Markov随机场模糊局部信息聚类法的SAR影像变化检测. 武汉大学学报(信息科学版). 2021(06): 844-851 .
    4. 高新,靳国旺,熊新,徐娇. 融合差异图与高斯混合模型相结合的SAR图像变化检测. 测绘科学技术学报. 2020(01): 68-73 .

    Other cited types(6)

Catalog

    Article views (1359) PDF downloads (58) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return